首页> 外文期刊>Solar Energy >Reduced graphene oxide (RGO) on TiO_2 for an improved photoelectrochemical (PEC) and photocatalytic activity
【24h】

Reduced graphene oxide (RGO) on TiO_2 for an improved photoelectrochemical (PEC) and photocatalytic activity

机译:TiO_2上还原的氧化石墨烯(RGO),以改善光电化学(PEC)和光催化活性

获取原文
获取原文并翻译 | 示例
       

摘要

In this study, TiO2 nanoparticles (NPs) /reduced graphene oxide (RGO) composites were prepared by hydro thermal process and physiochemical, optical, photocatalytic and photoelectrochemical properties of prepared materials was investigated. Photocatalytic activity measurement showed that methylene blue (MB) photo degraded faster by TiO2-RGO composites compared to bare TiO2. Furthermore, photoelectrochemical (PEC) properties of TiO2 and TiO2-RGO electrodes were investigated under the illumination of a 150 W Xe lamp in 1M aqueous solution of KOH as the electrolyte. Moreover, TiO2-RGO electrodes showed greatly improved photo current density which is 3.3-fold higher than pure TiO2. Combined analyses of Mott-Schottky plots and electrochemical impedance spectroscopy (EIS) confirmed that RGO in the TiO2-RGO nanocomposite increased the donor concentration (N-D), decreased recombination process of charge carriers (tau(D)), thinner the space charge layer (W-SCL) and reduced fiat band potential (V-Fb) of the TiO2, thereby greatly enhancing the PEC performances of the TiO2 photoanodes. The improved PEC performance of the TiO2-RGO nanocomposite compared to TiO2 NPs attributed to great enhancement of electron transport through the RGO in the TiO2- RGO film and consequently charge separation.
机译:本研究采用水热法制备了纳米TiO2 /还原氧化石墨烯(RGO)复合材料,并研究了所制备材料的理化,光学,光催化和光电化学性能。光催化活性测量表明,与裸露的TiO2相比,TiO2-RGO复合材料降解亚甲基蓝(MB)的光更快。此外,在150 W Xe灯在1M的KOH水溶液中作为电解质,研究了TiO2和TiO2-RGO电极的光电化学(PEC)性能。此外,TiO2-RGO电极显示出大大提高的光电流密度,比纯TiO2高3.3倍。 Mott-Schottky图和电化学阻抗谱(EIS)的组合分析证实,TiO2-RGO纳米复合材料中的RGO增加了施主浓度(ND),降低了载流子的重组过程(tau(D)),使空间电荷层更薄( W-SCL)并降低了TiO2的平坦带电势(V-Fb),从而大大提高了TiO2光阳极的PEC性能。与TiO2 NPs相比,TiO2-RGO纳米复合材料的PEC性能得到了改善,这归因于TiO2-RGO薄膜中通过RGO的电子传输大大增强,从而实现了电荷分离。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号