首页> 外文期刊>Soil Dynamics and Earthquake Engineering >Impact of spatial variability of shear wave velocity on the lagged coherency of synthetic surface ground motions
【24h】

Impact of spatial variability of shear wave velocity on the lagged coherency of synthetic surface ground motions

机译:剪力波速度空间变异对合成表面研磨滞后相干性的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The spatial incoherence of ground motion during an earthquake can have a significant effect on the dynamic response of engineering structures such as bridges, dams, nuclear power plants and lifeline facilities. The main objective of this paper is to study the effect of anisotropic heterogeneities in a soil layer overlying homogeneous bedrock on the lagged coherency of surface ground motion. A set of numerical experiments is performed based on 2D spatial variability of shear-wave velocities modeled as a homogeneous stationary random field and discretized by the EOLE method (Expansion Optimal Linear Estimation). Seismic ground motions were simulated using FLAC(2D) software in the 1-25 Hz band for a plane wave excitation with SV polarization. The soil is characterized by horizontal and vertical autocorrelation distances ranging between 5 and 20 m and 1 and 2 m, respectively, and a coefficient of variation of the shear-wave velocity varying between 5% and 40%. The synthetic seismograms calculated for 9 parameter sets (100 realizations each) clearly show seismic waves scattering and surface waves diffracted locally by the ground heterogeneities, generating large spatial variations in coherence mainly controlled by the coefficient of variation of shear-wave velocity. Consistently with existing models and experimental data, the numerical coherency curves decrease with frequency and receiver distance, however at a rate which is lower than that observed in the experimental data. This difference is probably due to intrinsic attenuation that is not accounted for in the simulations and/or to our 2D simulations that do not reproduce the complete wavefield. The numerical average coherency curves for each parameter set exhibit maxima within narrow frequency bands caused by the vertically trapped body waves and surface wave propagation properties within the average ground model. This interpretation is supported by experimental data recorded in the Koutavos-Argostoli valley (Greece).
机译:地震期间地面运动的空间不相停可能对工程结构的动态响应,如桥梁,水坝,核电厂和生命线设施产生重大影响。本文的主要目的是研究在覆盖均匀基岩上的土壤层中各向异性异质性对表面地面运动的滞后相干性的影响。基于作为均匀固定式随机场建模的剪切波速度的2D空间可变性来执行一组数值实验,并通过EOTE方法离散化(扩展最佳线性估计)。使用FLAC(2D)软件在1-25Hz波段中模拟地震地面运动,用于使用SV偏振的平面波激发。土壤的特征在于水平和垂直自相关距离,分别在5到20μm和1和2m之间,并且剪切波速度的变化系数在5%至40%之间。计算出9个参数集(每个实现)计算的合成地震图清楚地示出了由地面异质性衍射局部衍射的地震波散射和表面波,产生主要由剪切波速度的变化系数控制的相干性的大的空间变化。始终如一的现有模型和实验数据,数值一致性曲线随频率和接收器距离而降低,但是以低于实验数据中观察到的速率。这种差异可能是由于在模拟中不占的内在衰减,并且/或我们的2D模拟不会再现完整的波场。每个参数集的数值平均相干性曲线在平均地面模型内的垂直捕获体波和表面波传播特性引起的窄频带内具有最大值。在Koutavos-Aggostoli谷(希腊)中记录的实验数据支持这种解释。

著录项

  • 来源
    《Soil Dynamics and Earthquake Engineering》 |2021年第6期|106689.1-106689.14|共14页
  • 作者单位

    Univ Savoie Mt Blanc Univ Grenoble Alpes CNRS IRD IFSTTAR ISTerre F-38000 Grenoble France|Lebanese Univ Sci Reaserch Ctr Engn CSRI Fac Engn Geotech Engn Beirut Lebanon;

    Univ Savoie Mt Blanc Univ Grenoble Alpes CNRS IRD IFSTTAR ISTerre F-38000 Grenoble France;

    Univ Savoie Mt Blanc Univ Grenoble Alpes CNRS IRD IFSTTAR ISTerre F-38000 Grenoble France;

    Cent Supelec Paris Saclay Univ CNRS UMR 8579 MSSMat Lab 3 Rue Joliot Curie F-91190 Gif Sur Yvette France;

    Lebanese Univ Sci Reaserch Ctr Engn CSRI Fac Engn Geotech Engn Beirut Lebanon;

    Lebanese Univ Sci Reaserch Ctr Engn CSRI Fac Engn Geotech Engn Beirut Lebanon;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Coherency; Spatial variability; Seismic response; Random field; Autocorrelation;

    机译:一致性;空间变异性;地震反应;随机场;自相关;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号