首页> 外文期刊>Soil Dynamics and Earthquake Engineering >Geodynamics of very high speed transport systems
【24h】

Geodynamics of very high speed transport systems

机译:高速运输系统的地球动力学

获取原文
获取原文并翻译 | 示例
           

摘要

This work reveals the existence of a new dynamic load amplification mechanism due to ground surface loads. It is caused by the interaction between a moving vehicle's axle configuration and the vibration characteristics of the underlying soil-guideway system. It is more dominant than the traditionally considered 'critical velocity' dynamic amplification mechanism of the guideway-ground structure, and is of relevance to very high speed transport systems such as high speed rail.To demonstrate the new amplification mechanism, first a numerical model is developed, capable of simulating ground-wave propagation in the presence of a series of discrete high speed loads moving on a soil-guideway system. The model couples analytical equations for the transportation system guideway with the thin-layer element method for ground simulation. As a practical example, it is validated using high speed railroad field data and then used to analyse the response of a generalised single moving load at high speed. Next the effect of multiple discrete vehicle-guideway contact points is studied and it is shown that dynamic amplification is highly sensitive to load spacing when the speed is greater than the critical velocity. In particular, large resonant effects occur when the axle/magnet loading frequency and the propagating wave vibration frequency of the soil-guideway structure are equivalent. As an example, it is shown that for an individual case, although critical velocity might increase displacements by 50-100%, for the same scenario, axle configuration can increase displacements by 400%. It is also shown that resonance is sensitive to the total number of loading points and the individual frequencies excited by various spacings. The findings are important for current (e. g. high speed railway) and potential future (e.g. hyperloop) transport systems required to operate at speeds either close-to, or greater than the critical velocity of their supporting guideway-soil structure. In such situations, it is important to design the vehicle and supporting structure(s) as a combined system, rather than in isolation.
机译:这项工作揭示了由于地表载荷而存在的一种新的动态载荷放大机制。它是由行驶中的车辆的车轴配置与基础土壤导轨系统的振动特性之间的相互作用引起的。它比传统上认为的导轨-地面结构的“临界速度”动态放大机制更占主导地位,并且与高速运输系统(如高铁)相关。要演示新的放大机制,首先建立一个数值模型开发的软件能够在存在一系列在土壤导轨系统上移动的离散高速载荷的情况下模拟地波传播。该模型将运输系统导轨的解析方程与用于地面模拟的薄层单元法耦合在一起。作为一个实际示例,它使用高速铁路场数据进行了验证,然后用于分析广义单个运动载荷在高速下的响应。接下来研究了多个离散的车辆-导轨接触点的影响,结果表明,当速度大于临界速度时,动态放大对载荷间隔高度敏感。尤其是,当土壤/铁路结构的轴/磁铁负载频率和传播波振动频率相等时,会产生较大的共振效应。作为示例,表明对于个别情况,尽管临界速度可能使位移增加50-100%,但对于相同的情况,车轴配置可以使位移增加400%。还表明,共振对加载点的总数和由各种间隔激发的各个频率敏感。该发现对于以接近或大于其支撑导轨-土壤结构的临界速度的速度运行所需的当前(例如,高速铁路)和潜在的未来(例如,超高铁)运输系统是重要的。在这种情况下,重要的是将车辆和支撑结构设计为组合系统,而不是孤立地设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号