...
首页> 外文期刊>Soil Dynamics and Earthquake Engineering >Mitigation of lateral ground displacements of liquefied soils with underground barriers
【24h】

Mitigation of lateral ground displacements of liquefied soils with underground barriers

机译:具有地下屏障的液化土壤横向地面位移的缓解

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Analyses of damage data from earthquakes in the last 35 years show that very high financial losses have resulted from cases where liquefaction of soils was associated with ground lateral displacements towards a free boundary such as a shoreline, a river channel, or an open trench. Lateral displacements in excess of 10 m have been documented in the literature [Bartlett and Youd, J. Geotech. Engng, ASCE 121 (1995) 316]. In fact, in many cases, displacements amounting to only a fraction of this number are capable of causing considerable disruption to man-made works. Several factors contribute to the extent of lateral spreading: surface and subsurface geometry, soil characteristics, and intensity of ground motion. Ground displacements can be minimized or even arrested in practice with an underground structure properly designed to counter the driving forces, gravity and inertia combined. Mitchell et al. suggested practical guidance for the design of such structures, or barriers, in 1998 [Geotech. Spec. Publ. 75 (1998) 580]. However, to date there is no standard procedure to carry out the analysis of such barriers. The paper describes several recent designs of underground barriers that have been constructed in highly seismic environments. Three types of underground barriers are described: clay fill, a grid of structural piles, and a grid of cement-treated soil. The design of the cement-treated cell barrier is discussed in detail as it accounts for the most unfavorable combination of all forces acting on the structure: lateral stresses induced by liquefied soil, hydrodynamic effects, inertia forces, and loss of ground.
机译:对过去35年中地震造成的破坏数据的分析表明,由于土壤液化与地面向自由边界(如海岸线,河道或明渠)的横向位移有关,导致了很高的经济损失。横向位移超过10 m在文献中已有记载[Bartlett and Youd,J. Geotech。 Engng,ASCE 121(1995)316]。实际上,在许多情况下,位移仅占该数目的一小部分,就能够对人造作品造成相当大的破坏。有几个因素会影响横向扩展的程度:表面和地下的几何形状,土壤特性以及地面运动的强度。在实践中,通过适当设计以抵抗驱动力,重力和惯性的地下结构,可以使地面位移最小化,甚至可以制止地面位移。 Mitchell等。在1998年提出了设计此类结构或屏障的实用指南[Geotech。规格出版75(1998)580]。但是,迄今为止,尚无标准程序来进行此类障碍的分析。本文描述了在高地震环境中建造的几种地下屏障的最新设计。描述了三种类型的地下屏障:粘土填充,结构桩网格和水泥处理的土壤网格。详细讨论了水泥处理过的隔墙的设计,因为它解释了作用在结构上的所有力的最不利组合:液化土壤引起的侧向应力,水动力效应,惯性力和地面损失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号