...
首页> 外文期刊>Ships and offshore structures >Planing craft modeling in forward acceleration mode and minimisation of time to reach final speed
【24h】

Planing craft modeling in forward acceleration mode and minimisation of time to reach final speed

机译:向前加速模式下的滑艇模型建模,并最小化达到最终速度所需的时间

获取原文
获取原文并翻译 | 示例
           

摘要

Properly adjusting the trim angle during the craft speed up will be extremely important in special cases as in sports competitions or military missions. In such applications, the goal of trim adjustment is to reach final speed in a minimum possible time which is an advantage to just passing the resistance hump. Present study tries to provide insight into how the angles of the drive system and trim tab of a planing craft should be changed during speed up so as to minimise the time to reach the final speed. This is a time-optimal control problem with the drive and trim tab angles as the control variables. Optimal control theory has been used previously for the motion control of marine vessels in the applications such as seakeeping, manoeuvring and navigation. This study introduces a new application of this theory for increasing the craft speed performance. Conventional empirical relations are used in the equations of motion for calculating hydrodynamic forces to develop the dynamic model. To calculate the forces due to the propulsion system, attempts are made to take into account the propeller, the drive system and the engine concurrently in a simplified manner. The solution algorithm is explained and the results for a planing vessel with two different longitudinal centers of gravity are presented. Optimal solution for control variables shows a simultaneity and similarity in trend with the hull instantaneous trim angle. However, the optimal signals are restricted by upper physical margins.
机译:在特殊情况下,例如在体育比赛或军事任务中,在飞船加速期间正确调整微调角将非常重要。在此类应用中,微调调整的目标是在尽可能短的时间内达到最终速度,这对仅通过阻力峰是有好处的。当前的研究试图提供洞察力,以了解在加速过程中应如何更改驱动系统的角度和刨床的修整翼片,以最大程度地缩短达到最终速度的时间。这是一个时间最优的控制问题,将驱动角和修整翼片角作为控制变量。最优控制理论先前已用于诸如船舶维护,操纵和航行等应用中的船舶运动控制。这项研究介绍了该理论在提高工艺速度性能方面的新应用。在运动方程中使用常规的经验关系来计算流体动力来建立动力学模型。为了计算由推进系统产生的力,尝试以简化的方式同时考虑螺旋桨,驱动系统和发动机。说明了求解算法,并给出了具有两个不同纵向重心的滑行船的结果。控制变量的最优解与船体瞬时纵倾角显示出趋势的同时性和相似性。但是,最佳信号受到较高的物理余量的限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号