首页> 外文期刊>Sensors Journal, IEEE >Design of Dual-Band Uncooled Infrared Microbolometer
【24h】

Design of Dual-Band Uncooled Infrared Microbolometer

机译:双频非制冷红外测微仪的设计

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract-This paper describes the design and modeling of a smart uncooled infrared detector with wavelength selectivity in the long-wavelength infrared (LWIR) band. The objective is to enhance the probability of detecting and identifying objects in a scene. This design takes advantage of the smart properties of vanadium dioxide (VO2): it can switch reversibly from an IR-transparent to an IR-opaque thin film when properly triggered. This optical behavior is exploited here as a smart mirror that can modify the depth of the resonant cavity between the suspended thermistor material and a patterned mirror on the substrate, thereby altering wavelength sensitivity. The thermistor material used in the simulation is vanadium oxide (VOx). The simulation results show that, when VO2 is used in the metallic phase, it reflects IR radiation back to the suspended VOx and enhances IR absorption in the 9.4-10.8-μm band. When the film is switched to the semiconductor phase, it admits most IR radiation, which is then reflected back to the suspended VOχ by a patterned gold thin film under an SiO2 spacer layer. The spacer layer is used to increase the resonant cavity depth underneath the microbolometer pixel. Thus, the peak absorption value is shifted to 8-9.4 μm, creating the second spectral band. The detector is designed with a relatively low thermal conductance of 1.71 X 10-7 W/K to maximize responsivity (Rv) to values as high as 1.27 X 105 W/K and detectivity (D*) to as high as 1.62 x 109 cm-Hz1/2/W, both at 60 Hz. The corresponding thermal time constant is equal to 2.45 ms. Hence, these detectors could be used for 60-Hz frame rate applications. The extrapolated noise equivalent temperature difference is 14 and 16 mK for the 8-9.4- and 9.4-10.8-μm bands, respectively. The calculated absorption coefficients in the two spectral bands were 59% and- - 65%, respectively.
机译:摘要-本文描述了一种在长波长红外(LWIR)波段具有波长选择性的智能非制冷红外探测器的设计和建模。目的是提高检测和识别场景中对象的可能性。此设计利用了二氧化钒(VO 2 )的智能特性:如果触发正确,它可以从红外透明薄膜可逆转换为红外不透明薄膜。这种光学行为在这里被用作智能镜,可以改变悬浮的热敏电阻材料和基板上的图案化镜之间的谐振腔深度,从而改变波长灵敏度。模拟中使用的热敏电阻材料为氧化钒(VO x )。仿真结果表明,在金属相中使用VO 2 时,它将IR辐射反射回悬浮的VO x ,并增强了9.4-10.8- μm带。当薄膜转换为半导体相时,它会吸收大部分IR辐射,然后通过SiO 2 隔离层下的图案化金薄膜将其反射回悬浮的VOX中。隔离层用于增加微辐射热计像素下方的谐振腔深度。因此,峰值吸收值移动到8-9.4μm,产生第二光谱带。该检测器的热导率相对较低,为1.71 X 10 -7 W / K,可将响应度(R v )最大化至高达1.27 X 10 5 W / K和检测率(D *)都高达60 Hz时高达1.62 x 10 9 cm-Hz 1/2 / W 。相应的热时间常数等于2.45 ms。因此,这些检测器可用于60 Hz帧频应用。对于8-9.4-和9.4-10.8-μm波段,外推噪声等效温度差分别为14和16 mK。在两个光谱带中计算出的吸收系数分别为59%和-65%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号