首页> 外文期刊>Sensors Journal, IEEE >Assemblies of Microfluidic Channels and Micropillars Facilitate Sensitive and Compliant Tactile Sensing
【24h】

Assemblies of Microfluidic Channels and Micropillars Facilitate Sensitive and Compliant Tactile Sensing

机译:微流体通道和微柱的组装有助于灵敏和顺应性的触感

获取原文
获取原文并翻译 | 示例
           

摘要

Recent advances in soft electronics are enabling new devices that can stretch and conform to curved, soft, or dynamic surfaces, whether in engineering systems or the human body. However, the close coupling of mechanical and electronic behavior in these devices can limit performance and introduce artifacts. In order to mitigate negative effects, and to facilitate greater control over mechanical and electronic performance, we present a method for designing soft tactile sensors based on multi-layer heterogeneous 3D structures that combine active layers, containing embedded liquid metal electrodes, with passive and mechanically tunable layers, containing air cavities and micropillar array geometric supports. The assembled devices consist of thin membranes that integrate arrays of tactile sensors with 2-mm spatial resolution. They are produced using a soft lithography fabrication method based on the casting, alignment, and fusion of multiple functional layers in a soft polymer substrate. We have optimized the electronic and mechanical performance of these devices using numerical simulations. The results accurately predicted measured performance, making it possible to tailor both electronic and mechanical properties. These methods enable the design of tactile sensing arrays that are highly conformable and robust, and that possess a number of desirable attributes, including high sensitivity, monotonic output, good linearity, low cross-talk, low rate dependence, and low hysteresis. This may enable new applications in wearable electronics, healthcare, and robotics.
机译:软电子产品的最新进展使新设备能够在工程系统或人体中拉伸并适应弯曲,柔软或动态的表面。但是,这些设备中机械和电子行为的紧密耦合会限制性能并引入伪影。为了减轻负面影响并促进对机械和电子性能的更好控制,我们提出了一种基于多层异质3D结构设计软触觉传感器的方法,该结构将包含嵌入式液态金属电极的有源层与无源和机械结合在一起可调层,包含气腔和微柱阵列几何支撑。组装的设备由薄膜组成,这些薄膜集成了具有2mm空间分辨率的触觉传感器阵列。它们是根据软聚合物基板中多个功能层的浇铸,对齐和融合,使用软光刻制造方法生产的。我们使用数值模拟优化了这些设备的电子和机械性能。结果准确地预测了所测得的性能,从而可以调整电子和机械性能。这些方法使触觉传感阵列的设计具有高度的适应性和鲁棒性,并具有许多理想的属性,包括高灵敏度,单调输出,良好的线性度,低串扰,低速率依赖性和低滞后性。这可能会在可穿戴电子设备,医疗保健和机器人技术中实现新应用。

著录项

  • 来源
    《Sensors Journal, IEEE》 |2016年第24期|8908-8915|共8页
  • 作者单位

    Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA;

    Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA;

    Department of Electrical and Computer Engineering, Media Arts and Technology Program, California NanoSystems Institute, University of California at Santa Barbara, Santa Barbara, CA, USA;

    Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA;

    Department of Electrical and Computer Engineering, Media Arts and Technology Program, California NanoSystems Institute, University of California at Santa Barbara, Santa Barbara, CA, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sensor arrays; Tactile sensors; Performance evaluation; Electrodes; Capacitance;

    机译:传感器阵列;触觉传感器;性能评估;电极;电容;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号