首页> 外文期刊>Sensors and Actuators >Development of a micro-flame ionization detector using a diffusion flame
【24h】

Development of a micro-flame ionization detector using a diffusion flame

机译:使用扩散火焰的微火焰电离检测器的开发

获取原文
获取原文并翻译 | 示例
           

摘要

A micro-flame ionization detector (micro-FID) design is presented that is targeted for use in a portable gas sensor. Our micro-FID is based on a diffusion flame and features a folded flame structure that is more sensitive than a counter-flow flame designs. Unlike conventional FIDs that use a premixed or open diffusion flame, an air-hydrogen diffusion flame is employed and tested in an encapsulated structure of Quartz-Macor-Quartz layers. Diffusion flames are generally known to be more controllable and stable than premixed flames, where the stability of the micro-FID plays an important role for portable gas sensors. Various channel designs for oxidant and fuel flows meeting with different angles at the burner cavity are tested to obtain a stable flame and high output sensitivity over methane test samples. To verify the empirically designed microchannel, we simulate the temperature distribution in the microchannel by using computational fluid dynamics (CFD) software. To gauge the sensitivity of the device, the collected electric charges per mole (C/mol) is calculated and taken as a reference value of ionization efficiency. The result of the folded flame design is 1.959 × 10~(-2) C/mol for methane that is about 34 times higher than the result using a counter-flow flame, which is 5.73 × 10~(-4) C/mol for methane, while one of the commercial macro FIDs' is 10~(-1) C/mol. This result shows that the micro-FID using the folded flame structure has higher ionization efficiency with less leakage of the analytes than of the classical counter-flow flame design.
机译:提出了一种微火焰离子化检测器(micro-FID)设计,该设计旨在用于便携式气体传感器。我们的微型FID基于扩散火焰,并具有折叠火焰结构,该结构比逆流火焰设计更为灵敏。与使用预混或开放扩散火焰的常规FID不同,采用空气-氢扩散火焰并在Quartz-Macor-Quartz层的封装结构中进行了测试。众所周知,扩散火焰比预混火焰更加可控和稳定,其中,微型FID的稳定性对于便携式气体传感器起着重要作用。测试了氧化剂和燃料流在燃烧器腔体处遇到不同角度的各种通道设计,以在甲烷测试样品上获得稳定的火焰和高输出灵敏度。为了验证根据经验设计的微通道,我们使用计算流体力学(CFD)软件模拟了微通道中的温度分布。为了衡量设备的灵敏度,计算每摩尔收集的电荷(C / mol),并将其作为电离效率的参考值。折叠火焰设计的结果是甲烷为1.959×10〜(-2)C / mol,比使用逆流火焰的结果为5.73×10〜(-4)C / mol高约34倍。甲烷,而商业上的大型FID之一是10〜(-1)C / mol。该结果表明,与传统的逆流火焰设计相比,使用折叠火焰结构的微型FID具有更高的电离效率,并且分析物的泄漏更少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号