...
首页> 外文期刊>Sensors and Actuators >FEM analysis of magnetic agitation for tagging biomolecules with magnetic nanoparticles in a microfluidic system
【24h】

FEM analysis of magnetic agitation for tagging biomolecules with magnetic nanoparticles in a microfluidic system

机译:在微流体系统中用磁力搅拌有限元分析磁性纳米颗粒标记生物分子

获取原文
获取原文并翻译 | 示例

摘要

In a microfluidic system, magnetic nanoparticles (MNPs) tagged with biomolecules can be efficiently used for separation and detection. Tagging various fluid contents continuously in the micro-scale is often difficult due to slow diffusion process. Therefore, enormous time is needed for biomolecules to be thoroughly mixed and combined with MNPs. In this work, we report a finite-element COMSOL-based model to demonstrate the novel method of tagging biomolecules with MNPs on-chip using time-dependent magnetic field. The oscillating magnetic body forces that act on MNPs cause agitation in the surrounding fluid that otherwise follow laminar profile and overall speed up the reaction kinetics of the tagging process. Based on results, magnetic actuation is a strong function of both magnetic nanoparticle size and switching frequency of magnetic field and for the studied geometrical configuration and flow condition 100 nm MNPs together with 0.1 Hz switching frequency bring out optimum mixing condition. Effect of flow velocity is also studied and from the analysis MNPs actuated tagging process seems to be more profound at an optimum inlet velocity of 50 μm/s. Electrode current and electrode separation are also critical parameters and need to be optimized. For the given configuration, larger separation and higher current produce less agitation effect. Furthermore, magnetic actuation scheme is compared with passive mixing strategy. A 49% increase in tagging performance is observed when MNPs together with magnetic actuation scheme is used as compared to passive method consisting of barriers which only increases the tagging performance by 20%. The strategy demonstrated here is easy to implement and can be integrated on a lab-on-a-chip system. Overall, the developed COMSOL model demonstrates that time-dependent magnetic actuation is an efficient tool to tag MNPs with biomolecules in situ for the development of efficient point-of-care microfluidic systems.
机译:在微流体系统中,标记有生物分子的磁性纳米颗粒(MNP)可以有效地用于分离和检测。由于缓慢的扩散过程,通常难以在微尺度上连续标记各种流体含量。因此,将生物分子充分混合并与MNP结合需要大量时间。在这项工作中,我们报告了一个基于COMSOL的有限元模型,以演示使用时变磁场在芯片上用MNPs标记生物分子的新颖方法。作用在MNP上的振荡磁性力会引起周围流体的搅动,否则搅动将遵循层流轮廓,从而总体上加快了标记过程的反应动力学。根据结果​​,磁驱动是磁性纳米颗粒大小和磁场开关频率的强函数,并且对于所研究的几何构型和流动条件,100 nm MNP与0.1 Hz开关频率一起提供了最佳混合条件。还研究了流速的影响,并且根据分析结果,在最佳入口速度为50μm/ s的情况下,MNP驱动的标记过程似乎更为深刻。电极电流和电极间距也是关键参数,需要进行优化。对于给定的配置,较大的分离度和较高的电流产生较小的搅拌效果。此外,将电磁驱动方案与被动混合策略进行了比较。与由屏障组成的被动方法(仅将标记性能提高20%)一起使用时,与磁驱动方案一起使用MNP时,标记性能提高了49%。此处演示的策略易于实施,并且可以集成在芯片实验室系统中。总体而言,已开发的COMSOL模型证明了随时间变化的磁驱动是一种有效的工具,可以使用生物分子就地标记MNP,从而开发出高效的即时医疗微流体系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号