首页> 外文期刊>Sensors and Actuators >Understanding microfluidic-based gas detectors: A numerical model to investigate fundamental sensor operation, influencing phenomena and optimum geometries
【24h】

Understanding microfluidic-based gas detectors: A numerical model to investigate fundamental sensor operation, influencing phenomena and optimum geometries

机译:了解基于微流体的气体探测器:用于研究基本传感器操作,影响现象和最佳几何形状的数值模型

获取原文
获取原文并翻译 | 示例
       

摘要

Microfluidic-based gas detectors have been developed as an alternative method to GC/MS systems (which are bulky, expensive, and require trained professionals), and electronics noses (which require extensive calibration due to sensor drift). However, the performance of microfluidic-based gas detectors requires improvements before being commercially-viable in the gas monitoring market. Similar to other approaches, this novel technology requires a multitude of tests to calibrate against different compounds, concentrations, and environmental conditions. This paper presents a 3D numerical simulation to study the response of microfluidic-based gas detectors across various geometries using Multiphysics modeling of diffusion, surface adsorption/desorption, chemical reactions, and heat and momentum transfer phenomena. By using this model, response curves of different analyze concentrations are generated thereby reducing the need for manual calibration tests and associated costs. In this model, diffusion was demonstrated as the main parameter affecting the response, followed by surface adsorption/desorption and heat and momentum transfer, which had a minimal effect on the response. The model was also used to investigate the effect of the detector's dimensions (including microchannel length, microchannel height, and sensor housing volume) on sensitivity, selectivity and response/recovery time. Due to an observed trade-off between selectivity and sensitivity, a sum indicator was defined to investigate the best overall performance across various conditions. Results obtained from different geometrical dimensions and gas concentrations demonstrated that a change in channel length has the most pronounced impact on the sum indicator, especially for low gas concentrations.
机译:基于微流体的气体检测器已被开发为GC / MS系统(笨重,昂贵且需要经过培训的专业人员)和电子鼻(由于传感器漂移而需要进行广泛校准)的替代方法。但是,基于微流体的气体检测器的性能需要改进,才能在气体监测市场上实现商业应用。与其他方法类似,这项新技术需要进行大量测试才能针对不同的化合物,浓度和环境条件进行校准。本文提供了一个3D数值模拟,以使用扩散,表面吸附/解吸,化学反应以及热和动量传递现象的多物理场模型研究基于微流体的气体探测器在各种几何形状中的响应。通过使用该模型,可以生成不同分析浓度的响应曲线,从而减少了手动校准测试和相关成本的需要。在该模型中,扩散被证明是影响响应的主要参数,其次是表面吸附/解吸以及热量和动量传递,这对响应的影响最小。该模型还用于研究检测器尺寸(包括微通道长度,微通道高度和传感器外壳体积)对灵敏度,选择性和响应/恢复时间的影响。由于观察到了选择性和灵敏度之间的折衷,因此定义了总和指标以研究各种条件下的最佳总体性能。从不同的几何尺寸和气体浓度获得的结果表明,通道长度的变化对总和指标影响最为明显,尤其是对于低气体浓度而言。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号