...
首页> 外文期刊>Sensors and Actuators >Numerical simulation of mixing and heat transfer in an integrated centrifugal microfluidic system for nested-PCR amplification and gene detection
【24h】

Numerical simulation of mixing and heat transfer in an integrated centrifugal microfluidic system for nested-PCR amplification and gene detection

机译:用于巢式PCR扩增和基因检测的集成离心微流系统中混合和传热的数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Nucleic acid amplification via polymerase chain reaction (PCR) is one of the essential and powerful methods used in a myriad of bio-assays in clinical laboratories. Application of microfluidic devices in biologically-related processes like PCR can result in the usage of less volume of reactant samples and reduce the processing time. By implementing PCR systems on centrifugal microfluidic platforms, automation and portability can be easily achieved. Although several methods have been developed, most of them are still dealing with challenges of the required high processing time. This study presents the numerical simulation of a fully automated PCR system with the goal of enhancing the mixing quality of the agents comprising primers and samples and accelerating the thermocycling processes through applying a hybrid convective-radiative heat transfer mechanism resulting in an optimized time consumption. In this work, sample manipulation units such as siphon valves and capillary valves are precisely designed and optimized and the desired time of the operation is reduced considerably. In addition, the blending quality of sample and reactants- primers, polymerase enzyme and nucleotides in this case- is enhanced by employing two serpentine micromixers. The efficiency of these micromixers was improved considering rotational speed and geometrical parameters of the corresponding sections of the microfluidic device. Furthermore, instead of using a common convection-based thermocycling process, the novel presented system is designed based on a hybrid convective-radiative heat transfer mechanism and time consumption is significantly minimized and managed by conducing numerical optimizations.
机译:通过聚合酶链反应(PCR)进行核酸扩增是临床实验室中大量生物测定中使用的必不可少且功能强大的方法之一。将微流体装置应用于生物相关过程(如PCR)可导致使用较少体积的反应物样品并减少处理时间。通过在离心微流体平台上实施PCR系统,可以轻松实现自动化和便携性。尽管已经开发了几种方法,但是大多数方法仍在处理所需的高处理时间的挑战。这项研究提出了一个全自动PCR系统的数值模拟,其目的是通过应用混合对流-辐射热传递机制来提高时间和消耗,从而提高包含引物和样品的试剂的混合质量,并加速热循环过程。在这项工作中,精确设计和优化了诸如虹吸阀和毛细管阀之类的样品处理单元,并大大减少了所需的操作时间。此外,通过使用两个蛇形微混合器,可以提高样品和反应物(引物,聚合酶和核苷酸)的混合质量。考虑到微流体装置的相应部分的旋转速度和几何参数,提高了这些微混合器的效率。此外,代替使用常规的基于对流的热循环过程,该新颖的提出的系统是基于混合的对流-辐射传热机制设计的,并且通过进行数值优化显着最小化和管理了时间消耗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号