首页> 外文期刊>Semiconductor science and technology >Finite Element Modeling Of High-pressure Deformation And Phase Transformation Of Silicon Beneath A Sharp Indenter
【24h】

Finite Element Modeling Of High-pressure Deformation And Phase Transformation Of Silicon Beneath A Sharp Indenter

机译:尖锐压头下硅高压变形和相变的有限元建模

获取原文
获取原文并翻译 | 示例
       

摘要

Modeling of the mechanical response of single crystalline silicon to a sharp indenter is an essential step for the optimization of wafer manufacturing processes. In this paper, deformation of silicon during indenter loading and unloading was analyzed by the finite element method, and the changes of stress field and high-pressure phase distribution were dynamically simulated. We found that the deformation of silicon in nanoindentation can be simply characterized by two factors: one is the elastic strain of each high-pressure phase and the other is the equivalent elastic strain of each phase transformation. In loading, indentation energy is absorbed mostly by phase transformation, and accumulated as the elastic strain of the high-pressure phases. The distribution pattern of the high-pressure phases beneath the indenter is independent of the indentation load, and the depth of the phase-transformed region is approximately twice the indentation depth. In unloading, high-pressure phases except the β-Sn phase undergo reverse phase transformations. The β-Sn phase does not transform back to the diamond phase but changes to other non-equilibrium phases, which becomes the dominant reason for residual strain. During unloading, the non-equilibrium phase expands from the diamond phase region toward the indenter tip, while the boundary between the non-equilibrium phase and the diamond phase remains unchanged. The unloading mechanism is independent of the change in the maximum indentation load and the presence/absence of pop-out events.
机译:对单晶硅对尖锐压头的机械响应进行建模是优化晶圆制造工艺的重要步骤。本文通过有限元方法分析了压头加载和卸载过程中硅的变形,并动态模拟了应力场和高压相分布的变化。我们发现,纳米压痕中硅的变形可以简单地用两个因素来表征:一个是每个高压相的弹性应变,另一个是每个相变的等效弹性应变。在加载时,压痕能量主要通过相变吸收,并作为高压相的弹性应变积累。压头下方的高压相的分布方式与压痕载荷无关,相变区域的深度约为压痕深度的两倍。在卸载时,除β-Sn相以外的高压相都经历了逆相变。 β-Sn相不会转变回金刚石相,而是转变为其他非平衡相,这成为残余应变的主要原因。在卸载过程中,非平衡相从金刚石相区域向压头尖端扩展,而非平衡相与金刚石相之间的边界保持不变。卸载机制与最大压痕加载的变化以及弹出事件的存在与否无关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号