首页> 外文期刊>Semiconductor science and technology >Designer hydride routes to 'Si-Ge'/(Gd,Er)_2O_3/Si(111) semiconductor-on-insulator heterostructures
【24h】

Designer hydride routes to 'Si-Ge'/(Gd,Er)_2O_3/Si(111) semiconductor-on-insulator heterostructures

机译:设计者氢化物路由至'Si-Ge'/(Gd,Er)_2O_3 / Si(111)绝缘体上半导体异质结构

获取原文
获取原文并翻译 | 示例
       

摘要

We demonstrate Si-Ge integration on engineered M__2O_3/Si(111) (M = Gd.Er) dielectric buffer layers using non-traditional chemical precursors that provide new levels of functionality within the deposition process. Stoichiometric Si_(0.50)Ge_(0.50) alloys and pure Si heterostructures are grown epitaxially via ultra-low-temperature chemical vapor deposition using SiH_3GeH_3 and Si3H_8/Si_4Hio, respectively. In the case of Si on Gd_2O_3, an optimal growth processing window in the range of 500-600 ℃ was found to yield planar layers with monocrystalline structures via a proposed coincidence lattice matching mechanism (2a_(Si)-α_(Gd_2O_3))> while for the SiGe system (2% lattice mismatch) comparable quality films with fully relaxed strain states are deposited at a lower temperature range of 420-450 ℃. Extension of this growth process to Si on Er_2O_3 yields remarkably high-quality layers in spite of the even larger ~3% lattice mismatch. In all cases, the Si-Ge overlayers are found to primarily adopt an A-B-A epitaxial alignment with respect to the M_2O_3 buffered Si(1 1 1). A comparative study of the Si growth using Si_3H_8 and Si_4H_(10) indicates that both compounds provide an efficient and straightforward process for semiconductor growth on Gd_2O_3/Si(1 1 1), which appears to be more viable than conventional approaches from the point of view of scalability and volume.
机译:我们展示了使用非传统化学前体在工程M__2O_3 / Si(111)(M = Gd.Er)介电缓冲层上的Si-Ge集成,该化学前体在沉积过程中提供了新的功能级别。分别使用SiH_3GeH_3和Si3H_8 / Si_4Hio通过超低温化学气相沉积法外延生长化学计量比的Si_(0.50)Ge_(0.50)合金和纯Si异质结构。在Si在Gd_2O_3上的情况下,通过拟议的重合晶格匹配机制(2a_(Si)-α_(Gd_2O_3))>发现,在500-600℃范围内的最佳生长处理窗口可产生具有单晶结构的平面层。对于SiGe系统(2%的晶格失配),可在420-450℃的较低温度范围内沉积具有完全松弛应变状态的可比较质量的薄膜。尽管晶格失配更大甚至〜3%,但这种生长过程扩展到Er_2O_3上的Si仍产生了非常高质量的层。在所有情况下,发现Si-Ge覆盖层相对于M_2O_3缓冲的Si(1 1 1)主要采用A-B-A外延排列。使用Si_3H_8和Si_4H_(10)对Si的生长进行的比较研究表明,这两种化合物都为Gd_2O_3 / Si(1 1 1)上的半导体生长提供了一种有效而直接的方法,从以下方面来看,这比常规方法更可行。可伸缩性和容量的视图。

著录项

  • 来源
    《Semiconductor science and technology》 |2011年第12期|p.125005.1-125005.9|共9页
  • 作者单位

    Department of Chemistry and Biochemistry, and Department of Physics, Arizona State University, Tempe, AZ 85287, USA;

    Department of Chemistry and Biochemistry, and Department of Physics, Arizona State University, Tempe, AZ 85287, USA;

    Department of Chemistry and Biochemistry, and Department of Physics, Arizona State University, Tempe, AZ 85287, USA;

    Department of Chemistry and Biochemistry, and Department of Physics, Arizona State University, Tempe, AZ 85287, USA;

    Department of Chemistry and Biochemistry, and Department of Physics, Arizona State University, Tempe, AZ 85287, USA;

    Department of Chemistry and Biochemistry, and Department of Physics, Arizona State University, Tempe, AZ 85287, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 01:31:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号