首页> 外文期刊>Semiconductor science and technology >Plasmonic photovoltaics: near-field of a metal nanowire array on the interface for solar cell efficiency enhancement
【24h】

Plasmonic photovoltaics: near-field of a metal nanowire array on the interface for solar cell efficiency enhancement

机译:等离子光伏:界面上金属纳米线阵列的近场,用于提高太阳能电池的效率

获取原文
获取原文并翻译 | 示例
       

摘要

The analysis of the main principles of plasmonic photovoltaics relative to the enhancement of the efficiency of solar cells (SCs) by means of light trapping in a thin film SC is considered in this paper. Theoretical analysis and corresponding numerical calculations of the transmittance into a semiconductor base enhancement due to light trapping via the excitation of local (surface) plasmons and surface plasmon polaritons in a periodic metal nanowire array have been performed. The calculations have been performed for rectangular cross-section metal nanowires by the differential formalism method using the covariant form of Maxwell's equations in a curvilinear coordinate system. Local distributions of the electric field in plasmonic nanostructures are calculated for metal nanowires in both s- and p-polarization of incident light. Then both the light transmittance in the near- and far-field (wave) zones and the local generation rate of electron-hole pairs have been calculated using the spatial distribution of the Poynting vector. Angular/spectral distributions of transmittance and position/spectral distributions of the generation rate in the near-field zone have complicated the non-homogeneous character due to the excitation of surface plasmons and surface plasmon polaritons. It has been shown that the main highly enhanced near-field generation is localized in the so-called hot points on the nanoparticles/nanowires surface. The planar-averaged generation rate for the p-polarization of light has a near-field component, which is always more for a Si base (indirect bandgap semiconductor) than for GaAs (direct bandgap one). This plasmonic effect can be used for the base thicknesses down up to 100-150 nm due to light scattering and the surface plasmon enhancement of near-fields. These plasmon-carrying metal nanowires can be used as a current grid in an SC too.
机译:本文考虑了等离子体光电光伏的主要原理相对于通过薄膜SC中的光捕获来提高太阳能电池(SCs)效率的分析。由于在周期性金属纳米线阵列中由于局部(表面)等离激元和表面等离激元极化子的激发而引起的光俘获,对进入半导体基础增强层的透射率进行了理论分析和相应的数值计算。通过使用曲线坐标系中麦克斯韦方程的协变形式的微分形式主义方法,对矩形截面的金属纳米线进行了计算。对于金属纳米线,以入射光的S极化和P极化计算了等离子体纳米结构中电场的局部分布。然后,利用Poynting向量的空间分布,计算了近场和远场(波)区的透光率以及电子-空穴对的局部产生率。由于表面等离激元和表面等离激元极化子的激发,近场区域中透射率的角/光谱分布和生成速率的位置/光谱分布使非均匀特性变得复杂。已经表明,主要的高度增强的近场产生局限于纳米颗粒/纳米线表面上的所谓热点。光的p偏振的平面平均生成速率具有近场分量,对于Si基(间接带隙半导体)来说,其近场分量总是比GaAs(直接带隙半导体)更高。由于光散射和近场的表面等离激元增强,这种等离激元效应可用于低至100-150 nm的基底厚度。这些载有等离子体的金属纳米线也可以用作SC中的电流网格。

著录项

  • 来源
    《Semiconductor science and technology》 |2013年第5期|1-8|共8页
  • 作者

    N L Dmitruk; A V Korovin;

  • 作者单位

    V Ye Lashkaryov Institute of Semiconductor Physics of NAS of Ukraine, Prospect Nauky 41, Kyiv 03028, Ukraine;

    V Ye Lashkaryov Institute of Semiconductor Physics of NAS of Ukraine, Prospect Nauky 41, Kyiv 03028, Ukraine;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 01:30:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号