...
首页> 外文期刊>Semiconductor science and technology >Synthesis of metallic, semiconducting, and semi-metallic nanowires through control of InSb growth parameters
【24h】

Synthesis of metallic, semiconducting, and semi-metallic nanowires through control of InSb growth parameters

机译:通过控制InSb的生长参数合成金属,半导体和半金属纳米线

获取原文
获取原文并翻译 | 示例
           

摘要

In this work we present a simple route to grow metallic, semiconducting or semi-metallic nanowires by chemical vapor deposition. Metallic indium (In), semiconducting indium antimonide (InSb) and semi-metallic antimony (Sb) nanowires were successfully synthesized by controlling temperature and hence Sb vapor pressure in the higher eutectic region of the InSb phase diagram. Semiconducting InSb nanowires were synthesized by direct antimonidization of In droplets at a temperature of 480 ℃ in an Sb-rich environment. Ⅰ-Ⅴ measurements on a single 50 nm thick InSb nanowire field-effect transistor show electrons to be the majority carriers with an electron concentration of ≈10~(18) cm~(-3). Thermally activated Arrhenius conduction was observed in the temperature range from 200-325 K, yielding an activation energy of 0.11 eV. Metallic In nanowires were grown at 600 ℃, using a process similar to that for the growth of InSb nanowires. However, the higher growth temperature resulted in Sb re-evaporating from the growing nanowire crystal, leading to growth of In nanowires. The In nanowires were found to have an extremely high (≈10~(21) cm~(-3) electron concentration. Temperature dependent conductivity measurements show that at high temperatures the In nanowire conductivity varies as T~(-3/2), suggesting that acoustic phonons controlled electron transport. Antimony nanowire growth occurred at 400 ℃ by a self-catalyzed growth mechanism. Electron transport measurements on a single Sb nanowire reveal p-type conduction, with a hole concentration of ≈10~(19) cm~(-3). A higher hole mobility compared to electron mobility and the presence of surface states is the most likely cause of the hole-dominated conductivity in the Sb nanowires.
机译:在这项工作中,我们提出了一种通过化学气相沉积法生长金属,半导体或半金属纳米线的简单方法。通过控制温度并因此控制InSb相图较高共晶区内的Sb蒸气压,成功地合成了金属铟(In),半导体锑化铟(InSb)和半金属锑(Sb)纳米线。在富Sb的环境中,通过在480℃的温度下对In小滴进行直接锑化,合成了半导体InSb纳米线。在单个50 nm厚的InSb纳米线场效应晶体管上进行Ⅰ-Ⅴ测量表明,电子是多数载流子,电子浓度为≈10〜(18)cm〜(-3)。在200-325 K的温度范围内观察到热活化的Arrhenius传导,产生的活化能为0.11 eV。金属In纳米线在600℃下生长,其生长过程类似于InSb纳米线的生长过程。然而,较高的生长温度导致Sb从生长的纳米线晶体中重新蒸发,从而导致In纳米线的生长。发现In纳米线的电子浓度极高(≈10〜(21)cm〜(-3)。随温度变化的电导率测量结果表明,In纳米线的电导率随T〜(-3/2)的变化而变化,提示声子控制了电子的传输,锑的纳米线在400℃通过自催化生长机制生长,单条锑纳米线的电子传输测量表明p型导电,空穴浓度为≈10〜(19)cm〜 (-3)。与电子迁移率相比,更高的空穴迁移率和表面状态的存在是最可能导致Sb纳米线中空穴占主导的电导率的原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号