首页> 外文学位 >Mechanical and Electromechanical Properties of Semiconducting and Metallic Nanowires.
【24h】

Mechanical and Electromechanical Properties of Semiconducting and Metallic Nanowires.

机译:半导体和金属纳米线的机械和机电性能。

获取原文
获取原文并翻译 | 示例

摘要

Nanowires are envisioned as the building blocks of future electronics, sensing and actuation devices, nanostructured materials, among many applications. This technological potential arises because the properties of nanowires tend to be superior to those of bulk structures. However, unambiguous characterization of these properties has not been yet achieved, due to the challenging nature of nanoscale experimentation. In this thesis, we aimed at advancing the unambiguous characterization of mechanical and electromechanical properties of nanowires, by employing and improving MEMS-based (Microelectromechanical Systems) characterization technologies, which allow in-situ electron microscopy testing. Furthermore, we coupled the experimental results with atomistic simulations in order to attain fundamental understanding, and allow the determination of structure-property relations. This synergy between experiments and simulations also provides guidelines for improvements in both the experimental and computational techniques.;In the context of semiconducting specimens, we characterized the elastic modulus of GaN nanowires. We find that below 20 nm in diameter, the nanowires display enhanced elastic moduli. Above this size, nanowires show bulk behavior. The measured trends are consistent both in experiments and simulations. The modulus enhancement is caused by local contraction of the atomic bonds near the surface of the nanowires, which leads to a locally higher modulus at the surface.;For metallic specimens, we characterized the mechanical behavior of fivefold-twinned silver nanowires below 120 nm in diameter. To better match the loading condition between experiments and simulations, we implement a MEMS device for displacement-controlled testing, and subsequently employ it to characterize the cyclic plastic behavior of the nanowires. Experimentally, Bauschinger effect and partial recovery of the plastic deformation are observed. In-situ TEM experiments and atomistic simulations reveal that the twinned structure promotes reversibility in certain partial dislocations, leading to the observed plastic recovery.;Finally, leveraging the experience acquired on mechanical testing, we implement a MEMS device for four-point electromechanical characterization of nanowires. We validate the methodology using the fivefold twinned silver specimens, and then characterize the piezoresistance of n-doped silicon nanowires, which are found to display piezoresistive behavior of the same order of magnitude as bulk. Furthermore, we discover that contact resistance varies as a function of applied strain.
机译:纳米线被设想为未来电子设备,传感和致动设备,纳米结构材料以及许多应用的基础。之所以出现这种技术潜力,是因为纳米线的性能往往优于整体结构。然而,由于纳米级实验的挑战性性质,尚未实现对这些性质的明确表征。在本文中,我们旨在通过采用和改进基于MEMS(微机电系统)的表征技术来实现纳米线机械和机电性能的明确表征,该技术可进行原位电子显微镜测试。此外,我们将实验结果与原子模拟相结合,以获得基本的了解,并允许确定结构-性质关系。实验与仿真之间的这种协同作用还为改进实验和计算技术提供了指导。在半导体样品的背景下,我们表征了GaN纳米线的弹性模量。我们发现直径小于20 nm的纳米线显示出​​增强的弹性模量。超过此大小,纳米线表现出整体行为。在实验和模拟中,测得的趋势是一致的。模量增强是由纳米线表面附近原子键的局部收缩引起的,这导致表面上的局部模量更高。对于金属样品,我们表征了在120 nm以下的五重孪晶银纳米线的力学行为。直径。为了更好地匹配实验和仿真之间的加载条件,我们实现了用于位移控制测试的MEMS器件,随后将其用于表征纳米线的循环塑性行为。在实验中,观察到了鲍辛格效应和塑性变形的部分恢复。原位TEM实验和原子模拟表明,孪晶结构促进了某些部分位错的可逆性,从而导致了可观察到的塑性恢复。纳米线。我们使用五倍孪晶银样品验证了该方法,然后表征了n掺杂硅纳米线的压阻,发现其显示出与体积相同数量级的压阻行为。此外,我们发现接触电阻随施加应变的变化而变化。

著录项

  • 作者

    Bernal Montoya, Rodrigo A.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Mechanical.;Engineering Materials Science.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号