首页> 外文期刊>Semiconductor science and technology >Piezotronic effect in 1D van der Waals solid of elemental tellurium nanobelt for smart adaptive electronics
【24h】

Piezotronic effect in 1D van der Waals solid of elemental tellurium nanobelt for smart adaptive electronics

机译:元素碲纳米带的一维范德华固体中的压电效应,用于智能自适应电子

获取原文
获取原文并翻译 | 示例
       

摘要

Emerging technologies in wearable systems demand that functional devices can adaptively interact with the human body, where mechanical stimuli are ubiquitous and abundant. However, the electrical manipulation of charge carriers underpins the operations of state-of-the-art devices, and the effective control of interfacial energetics for charge carriers by the dynamic mechanical stimuli is still a relatively unexplored degree of freedom for semiconductor nanodevices. Piezotronic effect in nanostructured piezoelectric semiconductors offers exciting opportunities in addressing the above challenges. Here we report the first experimental exploration of piezotronic effect in 1D van der Waals solid of p-type tellurium nanobelt and systematically investigate the strain-gated charge carriers transport properties. The strain-induced polarization charges at the [1010] surfaces of Te nanobelt can modulate the electronic transport through the interfacial effect on the Schottky contacts and the volumetric effect on the conducting channel. The competing phenomenon between interfacial and volumetric effects has been studied for the first time in piezotronics. Our research allows the access to a broad range of characterization and application of Te nanomaterials for piezotronics and could guide the future study of piezotronic effect in other materials. This progress in piezotronics, together with emerging methods for deterministic production and assembly of nanomaterials, leads to compelling opportunities for research from basic studies of piezoelectricity and semiconductor properties in functional nanomaterials to the development of smarter' electronics and optoelectronics.
机译:可穿戴系统中的新兴技术要求功能性设备能够与人体相适应,而机械刺激无处不在。然而,电荷载流子的电操纵支撑了最新技术设备的操作,并且通过动态机械刺激对电荷载流子的界面能进行有效控制对于半导体纳米器件而言仍然是一个相对尚未探索的自由度。纳米结构压电半导体中的压电效应为解决上述挑战提供了令人兴奋的机会。在这里,我们报告对p型碲纳米带的一维范德华固体中压电效应的首次实验探索,并系统地研究应变门控电荷载流子的传输特性。 Te纳米带[1010]表面处的应变感应极化电荷可以通过肖特基接触上的界面效应和导电通道上的体积效应来调节电子传输。界面效应和体积效应之间的竞争现象是压电技术中的首次研究。我们的研究使压电纳米Te纳米材料的广泛表征和应用成为可能,并可能指导其他材料中压电效应的未来研究。压电技术的进步,以及确定性生产和组装纳米材料的新兴方法,为从功能纳米材料中的压电性和半导体特性的基础研究到更智能的电子学和光电子学的发展带来了令人信服的研究机会。

著录项

  • 来源
    《Semiconductor science and technology》 |2017年第10期|104004.1-104004.9|共9页
  • 作者单位

    Purdue Univ, Sch Ind Engn, W Lafayette, IN 47907 USA;

    Purdue Univ, Sch Ind Engn, W Lafayette, IN 47907 USA;

    Purdue Univ, Sch Ind Engn, W Lafayette, IN 47907 USA;

    Purdue Univ, Sch Ind Engn, W Lafayette, IN 47907 USA|Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    tellurium nanobelt; 1D van der Waals solid; piezotronic effect;

    机译:碲纳米带;1D van der Waals固体;压电效应;
  • 入库时间 2022-08-18 01:29:43

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号