...
首页> 外文期刊>Semiconductor science and technology >A novel planar back-gate design to control the carrier concentrations in GaAs-based double quantum wells
【24h】

A novel planar back-gate design to control the carrier concentrations in GaAs-based double quantum wells

机译:一种新的平面后栅设计,用于控制基于GaAs的双量子阱中的载流子浓度

获取原文
获取原文并翻译 | 示例
           

摘要

The precise control of a bilayer system consisting of two adjacent two-dimensional electron gases (2DEG) is demonstrated by using a novel planar back-gate approach based on ion implantation. This technique overcomes some common problems of the traditional design like the poor 2DEG mobility and leakage currents between the gate and the quantum well. Both bilayers with and without separate contacts have been prepared and tested. Tuning the electron density in one layer while keeping the second 2DEG at fixed density, one observes a dramatic increase of the carrier concentration. This tunneling resonance, which occurs at equal densities of both layers, demonstrates the separated contacts to each individual layer. In another sample with a smaller tunneling barrier and parallel contacted 2DEGs, the transition from a single 2DEG to a bilayer system is investigated at 50 mK in magnetic fields up to 12 T, showing the gate stability in high magnetic fields and very low temperatures. Transitions into an insulating (Wigner crystal) phase are observed in the individual layers in high fields at filling factors below 1/3. The absence of a fractional quantum Hall liquid at filling factor 1/5 in our structure seems to be a consequence of confining the electrons in quantum wells rather than at interfaces. The observed metal-insulator transitions appear to be nearly unaffected by the presence of the second layer separated by a barrier which is only 3 nm thick. We believe that this planar back-gate design holds great promise to produce controllable bilayers suitable to investigate the exotic (non-abelian) properties of correlated states.
机译:通过使用基于离子注入的新颖的平面后栅方法来说明由两个相邻的二维电子气体(2deg)组成的双层系统的精确控制。这种技术克服了传统设计的一些常见问题,如差的2deg移动性和栅极和量子之间的漏电流。已经制备和测试了具有和不具有单独触点的双层。在一层中调节电子密度,同时保持第二2deg在固定密度,观察到载流子浓度的显着增加。这种发生在两层相等密度的隧道共振,显示了与每个层的分离的触点。在具有较小隧道屏障和平行接触的2deg的另一个样品中,从单个2deg到双层系统的过渡在高达12t的磁场中以50 mk进行研究,显示高磁场中的栅极稳定性和非常低的温度。在低于1/3的填充因子的高场中的各个层中观察到绝缘(Wigner晶体)相的转变。在我们的结构中填充因子1/5处于填充因子1/5的缺失似乎是在量子阱中将电子而不是在界面处限制。观察到的金属绝缘体过渡似乎几乎不受由由屏障分开的第二层的存在,这仅是3nm厚的第二层。我们认为,这种平面的后门设计能够产生适合于研究相关状态的异国情调(非雅利安)性质的可控双层的承担。

著录项

  • 来源
    《Semiconductor science and technology》 |2020年第8期|085019.1-085019.8|共8页
  • 作者单位

    Swiss Fed Inst Technol Solid State Phys Lab CH-8093 Zurich Switzerland;

    Univ Hamburg Ctr Hybrid Nanostruct D-22761 Hamburg Germany;

    Swiss Fed Inst Technol Solid State Phys Lab CH-8093 Zurich Switzerland;

    Swiss Fed Inst Technol Solid State Phys Lab CH-8093 Zurich Switzerland;

    Univ Hamburg Ctr Hybrid Nanostruct D-22761 Hamburg Germany;

    Swiss Fed Inst Technol Solid State Phys Lab CH-8093 Zurich Switzerland|Max Planck Inst Solid State Res D-70569 Stuttgart Germany;

    Swiss Fed Inst Technol Solid State Phys Lab CH-8093 Zurich Switzerland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    back-gate; bilayer system; gallium arsenide; double quantum well;

    机译:后门;双层系统;砷化镓;双量子井;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号