首页> 外文期刊>Science >Selective increase in CO2 electroreduction activity at grain-boundary surface terminations
【24h】

Selective increase in CO2 electroreduction activity at grain-boundary surface terminations

机译:在晶界表面终止处选择性增加CO2电还原活性

获取原文
获取原文并翻译 | 示例
       

摘要

Altering amaterial's catalytic properties requires identifying structural features that give rise to active surfaces. Grain boundaries create strained regions in polycrystalline materials by stabilizing dislocations and may provide a way to create high-energy surfaces for catalysis that are kinetically trapped. Although grain-boundary density has previously been correlated with catalytic activity for some reactions, direct evidence that grain boundaries create surfaces with enhanced activity is lacking. We used a combination of bulk electrochemical measurements and scanning electrochemical cell microscopy with submicrometer resolution to show that grain-boundary surface terminations in gold electrodes are more active than grain surfaces for electrochemical carbon dioxide (CO2) reduction to carbon monoxide (CO) but not for the competing hydrogen (H-2) evolution reaction. The catalytic footprint of the grain boundary is commensurate with its dislocation-induced strain field, providing a strategy for broader exploitation of grain-boundary effects in heterogeneous catalysis.
机译:改变材料的催化性能需要确定产生活性表面的结构特征。晶界通过稳定位错在多晶材料中产生应变区域,并可能提供一种方法来创建动力学捕获的高能催化表面。尽管以前晶界密度已经与某些反应的催化活性相关,但缺乏晶界产生活性增强表面的直接证据。我们将整体电化学测量和扫描电化学池显微镜结合使用亚微米级分辨率,以表明金电极中的晶界表面终端比将电化学二氧化碳(CO2)还原为一氧化碳(CO)的颗粒表面更具活性。竞争性氢(H-2)放出反应。晶界的催化足迹与其位错诱导的应变场相对应,为在非均相催化中更广泛地利用晶界效应提供了一种策略。

著录项

  • 来源
    《Science》 |2017年第6367期|1187-1192|共6页
  • 作者单位

    Stanford Univ, Dept Chem, 337 Campus Dr, Stanford, CA 94305 USA;

    Univ Utah, Dept Chem, 315 S 1400 E, Salt Lake City, UT 84112 USA|Trinity Coll Dublin, Sch Chem, Dublin 2, Ireland;

    Univ Utah, Dept Chem, 315 S 1400 E, Salt Lake City, UT 84112 USA;

    Stanford Univ, Dept Chem, 337 Campus Dr, Stanford, CA 94305 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:51:24

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号