首页> 外文期刊>Science of the total environment >Surface catalyzed hydrolysis of chloramphenicol by montmorillonite under limited surface moisture conditions
【24h】

Surface catalyzed hydrolysis of chloramphenicol by montmorillonite under limited surface moisture conditions

机译:在有限的表面湿气条件下蒙脱石氯霉素表面催化水解

获取原文
获取原文并翻译 | 示例
       

摘要

Phyllosilicates possess high surface acidity under limited surface moisture conditions and are thus able to mediate the abiotic transformation of antibiotics. This route of abiotic transformation has long been ignored given that most of the studies carried out in aqueous phase. In this study, the catalytic performance of cation-exchanged montmorillonites (M~(n+)-Mts) to the hydrolysis of chloramphenicol (CAP) was investigated under different moisture conditions. Montmorillonite exchanged with Fe~(3+) and Al~(3+) show the greatest catalytic activities. Multiple spectroscopic techniques and theoretical calculations indicate that the surface Bronsted- and Lewis-acid properties are sensitive to surface wetting. At lower moisture level (<10%, wt/wt), the strong Bronsted-acid catalysis predominates the hydrolysis of CAP. Attributing to the strong Lewis-acidities, Fe~(3+)-Mt and Al~(3+)-Mt could perform high catalytic activities over a wider moisture range (10-100%, wt/wt). However, such hydrolysis reaction was almost suppressed at water content >400%. In addition, the presence of natural organic matter (NOM, 1%, wt/wt) had little impact on the catalytic activities of Fe~(3+)-Mt and Al~(3+)-Mt. The results of this study highlight the environmental significance of dry surface reaction by clay minerals as an effective abiotic transformation pathway to the elimination of antibiotics in natural field soil, which is commonly partly hydrated.
机译:Phyllosilicates在有限的表面水分条件下具有高表面酸度,因此能够介导抗生素的非生物转化。鉴于在水相中进行的大多数研究,这种非生物转化的途径长期以来一直被忽略。在该研究中,在不同的水分条件下研究了阳离子交换的蒙脱石(M〜(N +) - MTS)的催化性能(M〜(N +) - MTS)的水解。与Fe〜(3+)和Al〜(3+)交换的蒙脱石均显示出最大的催化活动。多种光谱技术和理论计算表明表面伪造和路易斯 - 酸性能对表面润湿性敏感。在较低的水分水平(<10%,wt / wt),强桥面酸催化主要含有帽的水解。归因于强的路易斯酸性,Fe〜(3 +) - Mt和Al〜(3 +) - MT可以在较宽的水分范围内进行高催化活性(10-100%,WT / WT)。然而,这种水解反应在含水量> 400%时几乎抑制。此外,天然有机物(NOM,1%,WT / WT)的存在对Fe〜(3 +) - Mt和Al〜(3 +) - Mt的催化活性没有影响。该研究的结果突出了粘土矿物的干燥表面反应的环境意义作为消除天然田地土壤中消除抗生素的有效的非生物转化途径,这通常是部分水合的。

著录项

  • 来源
    《Science of the total environment》 |2021年第20期|144843.1-144843.9|共9页
  • 作者单位

    State Key Laboratory of Pollution Control and Resource Reuse School of the Environment Nanjing University China;

    State Key Laboratory of Pollution Control and Resource Reuse School of the Environment Nanjing University China;

    College of Environmental Science and Engineering Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria Nankai University China;

    State Key Laboratory of Pollution Control and Resource Reuse School of the Environment Nanjing University China;

    Key Laboratory of Soil Environment and Pollution Remediation Institute of Soil Science Chinese Academy of Sciences China;

    State Key Laboratory of Pollution Control and Resource Reuse School of the Environment Nanjing University China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Clay minerals; Antibiotics; Non-aqueous reactions; Bronsted/Lewis-acid catalysis; DFT calculation;

    机译:粘土矿物质;抗生素;非水反应;布朗斯特德/路易斯酸催化;DFT计算;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号