...
首页> 外文期刊>Science of the total environment >Human Biokinetic Data And A New Compartmental Model Of Zirconium — A Tracer Study With Enriched Stable Isotopes
【24h】

Human Biokinetic Data And A New Compartmental Model Of Zirconium — A Tracer Study With Enriched Stable Isotopes

机译:人类生物动力学数据和新型的锆隔室模型—富含稳定同位素的示踪剂研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Biokinetic models describing the uptake, distribution and excretion of trace elements are an essential tool innutrition, toxicology, or internal dosimetry of radionuclides. Zirconium, especially its radioisotope 95Zr, isrelevant to radiation protection due to its production in uranium fission and neutron activation of nuclear fuelcladding material. We present a comprehensive set of human data from a tracer study with stable isotopes ofzirconium. The data are used to refine a biokinetic model of zirconium.Six female and seven male healthy adult volunteers participated in the study. It includes 16 complete doubletracer investigations with oral ingestion and intravenous injection, and seven supplemental investigations.Tracer concentrations were measured in blood plasma and urine collected up to 100 d after traceradministration. The four data sets (two chemical tracer forms in plasma and urine) each encompass 105-240measured concentration values above detection limits.Total fractional absorption of ingested zirconium was found to be 0.001 for zirconium in citrate-buffereddrinking solution and 0.007 for zirconium oxalate solution.Biokinetic models were developed based on the linear first-order kinetic compartmental model approachused by the International Commission on Radiological Protection (ICRP). The main differences of theoptimized systemic model of zirconium to the current ICRP model are (1) recycling into the transfercompartment made necessary by the observed tracer clearance from plasma, (2) different parameters relatedto fractional absorption for each form of the ingested tracer, and (3) a physiologically based excretionpathway to urine.The study considerably expands the knowledge on the biokinetics of zirconium, which was until nowdominated by data from animal studies. The proposed systemic model improves the existing ICRP model, yetis based on the same principles and fits well into the ICRP radiation protection approach.
机译:描述微量元素吸收,分布和排泄的生物动力学模型是放射性核素的营养,毒理学或内部剂量测定的重要工具。锆,特别是其放射性同位素95Zr,由于其在铀裂变中产生和核燃料包壳材料的中子活化而与辐射防护相关。我们提供了一组稳定的锆同位素示踪剂研究得出的全面的人类数据。这些数据用于完善锆的生物动力学模型。六名女性和七名男性健康成人志愿者参加了这项研究。它包括16次完整的双示踪剂口服和静脉内注射研究,以及7次补充性研究。示踪剂给药后长达100 d的血浆和尿液中示踪剂浓度均已测量。这四个数据集(血浆和尿液中有两种化学示踪剂形式)各自包含高于检测极限的105-240个测得的浓度值。柠檬酸盐缓冲的饮用水中摄入的锆的总百分吸收率为0.001,草酸锆溶液的总吸收率为0.007。生物动力学模型是根据国际放射防护委员会(ICRP)采用的线性一阶动力学区室模型开发的。锆的优化系统模型与当前ICRP模型的主要区别在于(1)观察到的示踪剂与血浆的清除作用,使再循环室成为必要的转移室;(2)各种形式的摄入示踪剂的部分吸收相关参数不同,以及( 3)尿液的一种基于生理的排泄途径。这项研究极大地扩展了锆的生物动力学知识,迄今为止,这一直是动物研究的数据。拟议的系统模型改进了现有的ICRP模型,但仍基于相同的原理,非常适合ICRP辐射防护方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号