首页> 外文期刊>The Science of the Total Environment >Synthesis of super hydrophilic cellulose-alpha zirconium phosphate ion exchange membrane via surface coating for the removal of heavy metals from wastewater
【24h】

Synthesis of super hydrophilic cellulose-alpha zirconium phosphate ion exchange membrane via surface coating for the removal of heavy metals from wastewater

机译:通过表面涂层合成超亲水纤维素-αα磷酸锂离子交换膜,从而从废水中除去重金属

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, commercial cellulose membranes were surface coated with alpha-zirconium phosphate nanoparticles (alpha-ZrP-n) to study their impact on the overall removal efficiency of heavy metals from synthetic metal mixture wastewater solution. A total of four homogeneous solutions (0.25, 0.50, 0.75, and 1.00 wt%) of alpha-ZrP-n were prepared by sonicating the nanoparticles in deionized water. These solutions were used to surface coat the commercial cellulose membranes. The Scanning Electron Microscopy (SEM) along with Energy Dispersive Spectroscopy (EDS) were used to confirm the attachment of alpha-ZrP-n on the cellulose membrane surface. Furthermore, the structural characteristics of the alpha-ZrP-n modified cellulose membranes were also studied. The water contact angle results showed that all coated membranes remained super-hydrophilic. The porosity of the membranes decreased to 48% with the addition of 1.00 wt% alpha-ZrP-n compared to 65% for the pristine membrane. The mechanical strength has improved from 3.4 MPa for the pristine membrane to about 4 MPa for the 1.00 wt% alpha-ZrP-n membrane. Similarly, the thermal stability was found to be slightly enhanced as evidenced by the increase in decomposition temperature to 280 and 285 degrees C in the 0.75 and 1.00 wt% alpha-ZrP-n membranes, respectively. Furthermore, a removal efficiency of 97.0 +/- 0.6, 98.0 +/- 0.5, 99.5 +/- 0.2, and 91.5 +/- 2.0% for Cu (II), Zn (II), Ni (II), and Pb (II), respectively, was observed with the 0.50 wt% alpha-ZrP-n membrane. This removal was achieved at a flux of 41.85 +/- 0.87 x 10(3) LMH. Increasing the alpha-ZrP-n concentration further did not show any improvement in the overall removal efficiency. However, it led to 46% flux reduction in the 1.00 wt% alpha-ZrP-n membrane. The mechanism of removal of the heavy metal ions was postulated to be a combination of ion exchange and electrostatic attraction of the strong negatively charged alpha-ZrP-n membranes and the free metal ions in the wastewater solution. (C) 2019 Elsevier B.V. All rights reserved.
机译:在该研究中,商业纤维素膜用α-磷酸锆纳米粒子(α-ZRP-N)涂覆的表面,以研究它们对来自合成金属混合物废水溶液的重金属总去除效率的影响。通过将纳米颗粒放入去离子水中的纳米颗粒来制备总共4个均相溶液(0.25,0.50,0.75和1.00wt%)的α-Zrp-n。这些溶液用于表面涂层商业纤维素膜。使用扫描电子显微镜(SEM)以及能量分散光谱(EDS)来证实α-ZRP-N在纤维素膜表面上的附着。此外,还研究了α-ZRP-N改性纤维素膜的结构特征。水接触角结果表明,所有涂覆的膜保持超亲水。膜的孔隙率降低至48%,加入1.00wt%α-Zrp-n,而原始膜的65%。机械强度从3.4MPa改善了原始膜的3.4MPa,为1.00wt%α-Zrp-n膜的约4MPa。类似地,发现热稳定性分别通过分解温度的增加分别在0.75和1.00wt%α-ZrP-N膜中的分解温度增加到280%和285℃的略微增强。此外,对于Cu(II),Zn(II),Ni(II),Ni(II)和Pb(II),Ni(II)和Pb( II)用0.50wt%α-Zrp-n膜观察。在41.85 +/- 0.87×10(3)LMH的通量下实现该去除。增加α-ZRP-N浓度进一步没有显示出总去除效率的任何改善。然而,它导致1.00wt%α-Zrp-N膜中的46%的通量降低。假设重质金属离子的去除机制是强度带负电荷的α-Zrp-n膜的离子交换和静电吸引的组合,以及废水溶液中的游离金属离子。 (c)2019 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《The Science of the Total Environment》 |2019年第10期|167-180|共14页
  • 作者单位

    Khalifa Univ Sci & Technol Dept Chem Engn Ctr Membrane & Adv Water Technol CMAT Masdar City Campus POB 127788 Abu Dhabi U Arab Emirates;

    Khalifa Univ Sci & Technol Dept Chem Engn Ctr Membrane & Adv Water Technol CMAT Masdar City Campus POB 127788 Abu Dhabi U Arab Emirates;

    Univ Salerno Dept Civil Engn Via Giovanni Paolo II 132 I-84084 Fisciano SA Italy;

    Khalifa Univ Sci & Technol Dept Chem Engn Ctr Membrane & Adv Water Technol CMAT Masdar City Campus POB 127788 Abu Dhabi U Arab Emirates;

    Khalifa Univ Sci & Technol Dept Chem Engn Ctr Membrane & Adv Water Technol CMAT Masdar City Campus POB 127788 Abu Dhabi U Arab Emirates;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cellulose membranes; Zirconium phosphate; Surface coating; Wastewater; Heavy metals;

    机译:纤维素膜;磷酸锆;表面涂层;废水;重金属;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号