首页> 外文期刊>Science of the total environment >Differentiating transpiration from evaporation in seasonal agricultural wetlands and the link to advective fluxes in the root zone
【24h】

Differentiating transpiration from evaporation in seasonal agricultural wetlands and the link to advective fluxes in the root zone

机译:区分季节性农业湿地中的蒸腾作用与蒸发之间的关系以及与根区对流通量的关系

获取原文
获取原文并翻译 | 示例
           

摘要

The current state of science and engineering related to analyzing wetlands overlooks the importance of transpiration and risks data misinterpretation. In response, we developed hydrologic and mass budgets for agricultural wetlands using electrical conductivity (EC) as a natural conservative tracer. We developed simple differential equations that quantify evaporation and transpiration rates using flow rates and tracer concentrations at wetland inflows and outflows. We used two ideal reactor model solutions, a continuous flow stirred tank reactor (CFSTR) and a plug flow reactor (PFR), to bracket real non-ideal systems. From those models, estimated transpiration ranged from 55% (CFSTR) to 74% (PFR) of total evapotranspiration (ET) rates, consistent with published values using standard methods and direct measurements. The PFR model more appropriately represents these non-ideal agricultural wetlands in which check ponds are in series. Using a flux model, we also developed an equation delineating the root zone depth at which diffusive dominated fluxes transition to advective dominated fluxes. This relationship is similar to the Peclet number that identifies the dominance of advective or diffusive fluxes in surface and groundwater transport. Using diffusion coefficients for inorganic mercury (Hg) and methylmer-cury (MeHg) we calculated that during high ET periods typical of summer, advective fluxes dominate root zone transport except in the top millimeters below the sediment-water interface. The transition depth has diel and seasonal trends, tracking those of ET. Neglecting this pathway has profound implications: misallocating loads along different hydrologic pathways; misinterpreting seasonal and diel water quality trends; confounding Fick's First Law calculations when determining diffusion fluxes using pore water concentration data; and misinterpreting biogeochemical mechanisms affecting dissolved constituent cycling in the root zone. In addition, our understanding of internal root zone cycling of Hg and other dissolved constituents, benthic fluxes, and biological irrigation may be greatly affected.
机译:与分析湿地有关的科学和工程学的当前状态忽视了蒸腾作用的重要性,并可能误解数据。作为回应,我们使用电导率(EC)作为自然的保守示踪剂,为农业湿地制定了水文和总体预算。我们开发了简单的微分方程,使用湿地流入和流出时的流速和示踪剂浓度来量化蒸发和蒸腾速率。我们使用了两种理想的反应器模型解决方案,即连续流搅拌釜反应器(CFSTR)和活塞流反应器(PFR),以对实际的非理想系统进行分类。从这些模型中,估计的蒸腾量在总蒸散(ET)率的55%(CFSTR)到74%(PFR)之间,与使用标准方法和直接测量的公布值一致。 PFR模型更恰当地表示了这些非理想的农业湿地,其中的检查池塘串联在一起。使用通量模型,我们还开发了一个方程,用于描述根区深度,在该深度处,扩散支配通量转变为对流支配通量。这种关系与佩克雷特数相似,后者确定了地面和地下水输送中对流或扩散通量的优势。利用无机汞(Hg)和甲基汞(MeHg)的扩散系数,我们计算出,在夏季典型的高ET时期,对流通量支配根区的迁移,但沉积物-水界面以下的顶部毫米除外。过渡深度具有diel和季节性趋势,跟踪ET的趋势。忽略这一途径具有深远的意义:沿着不同的水文途径分配负荷;误解了季节性和迪尔水质趋势;使用孔隙水浓度数据确定扩散通量时,混淆了Fick的第一定律计算;误解了影响根区溶解成分循环的生物地球化学机制。此外,我们对汞和其他溶解成分的内部根区循环,底栖通量和生物灌溉的理解可能会受到很大影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号