首页> 外文期刊>The Science of the Total Environment >Preferential methanogenic biodegradation of short-chain n-alkanes by microbial communities from two different oil sands tailings ponds
【24h】

Preferential methanogenic biodegradation of short-chain n-alkanes by microbial communities from two different oil sands tailings ponds

机译:来自两个不同油砂尾矿库的微生物群落对短链正构烷烃的优选产甲烷生物降解

获取原文
获取原文并翻译 | 示例
           

摘要

Oil sands tailings ponds harbor diverse anaerobic microbial communities capable of methanogenic biodegradation of solvent hydrocarbons entrained in the tailings. Mature fine tailings (MFT) from two operators (Albian and CNRL) that use different extraction solvents were incubated with mixtures of either two (n-pentane and n-hexane) or four (n-pentane, n-hexane, n-octane and n-decane) n-alkanes under methanogenic conditions for ~600 d. Microbes in Albian MFT began methane production by ~80 d, achieving complete depletion of n-pentane and n-hexane in the two-alkane mixture and their preferential biodegradation in the four-alkane mixture. Microbes in CNRL MFT preferentially metabolized n-octane and n-decane in the four-alkane mixture after a ~80 d lag but exhibited a lag of ~360 d before commencing biodegradation of n-pentane and n-hexane in the two-alkane mixture. 16S rRNA gene pyrosequencing revealed Peptococcaceae members as key bacterial n-alkane degraders in all treatments except CNRL MFT amended with the four-alkane mixture, in which Anaerolineaceae, Desulfobacteraceae (Desulfobacterium) and Syntrophaceae [Smithella) dominated during n-octane and n-decane biodegradation. Anaerolineaceae sequences increased only in cultures amended with the four-alkane mixture and only during n-octane and n-decane biodegradation. The dominant methanogens were acetoclastic Methanosaetaceae. These results highlight preferential n-alkane biodegradation by microbes in oil sands tailings from different producers, with implications for tailings management and reclamation.
机译:油砂尾矿池具有多种厌氧微生物群落,能够对尾矿中夹带的溶剂碳氢化合物进行产甲烷生物降解。将来自使用不同萃取溶剂的两个操作员(Albian和CNRL)的成熟细尾矿(MFT)与两种(正戊烷和正己烷)或四种(正戊烷,正己烷,正辛烷和在产甲烷条件下持续600 d的正癸烷)。 Albian MFT中的微生物在约80 d内开始产生甲烷,实现了两链烷混合物中正戊烷和正己烷的完全消耗,并在四烷烃混合物中实现了优先的生物降解。 CNRL MFT中的微生物在滞后约80 d后优先代谢四烷混合物中的正辛烷和正癸烷,但在开始对两烷混合物中的正戊烷和正己烷进行生物降解之前表现出约360 d的滞后。 。 16S rRNA基因焦磷酸测序揭示了肽球菌科成员在所有处理中均是关键的细菌正构烷烃降解体,但CNRL MFT用四烷烃混合物进行了修正,其中在正辛烷和正癸烷中,厌氧杆菌科,脱硫杆菌科(Sulfhbacterae)和间突菌科(Smithella)占主导地位。生物降解。厌氧消化科序列仅在用四烷烃混合物改良的培养物中以及仅在正辛烷和正癸烷生物降解期间增加。占主导地位的产甲烷菌是乙酰碎屑性甲烷藻科。这些结果凸显了微生物在不同生产商的油砂尾矿中优先对正构烷烃的生物降解作用,这对尾矿的管理和回收具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号