Abstract Characterizing chemical transformation of organophosphorus compounds by ~(13)C and ~2H stable isotope analysis
首页> 外文期刊>The Science of the Total Environment >Characterizing chemical transformation of organophosphorus compounds by ~(13)C and ~2H stable isotope analysis
【24h】

Characterizing chemical transformation of organophosphorus compounds by ~(13)C and ~2H stable isotope analysis

机译:通过〜(13)C和〜2H稳定同位素分析表征有机磷化合物的化学转化

获取原文
获取原文并翻译 | 示例
           

摘要

AbstractContinuous and excessive use of organophosphorus compounds (OPs) has led to environmental contaminations which raise public concerns. This study investigates the isotope fractionation patterns of OPs in the aquatic environment dependence upon hydrolysis, photolysis and radical oxidation processes. The hydrolysis of parathion (EP) and methyl parathion (MP) resulted in significant carbon fractionation at lower pH (pH2–7, εC=−6.9~−6.0‰ for EP, −10.5~−9.9‰ for MP) but no detectable carbon fractionation at higher pH (pH12). Hydrogen fractionation was not observed during any of the hydrolysis experiments. These results indicate that compound specific isotope analysis (CSIA) allows distinction of two different pH-dependent pathways of hydrolysis. Carbon and hydrogen isotope fractionation were determined during UV/H2O2photolysis of EP and tris(2-chloroethyl) phosphate (TCEP). The constant δ2H values determined during the OH radical reaction of EP suggested that the rate-limiting step proceeded through oxidative attack by OH radical on the PS bond. The significant H isotope enrichment suggested that OH radical oxidation of TCEP was caused by an H-abstraction during the UV/H2O2processes (εH=−56±3‰). Fenton reaction was conducted to validate the H isotope enrichment of TCEP associated with radical oxidation, which yielded εHof −34±5‰. Transformation products of OPs during photodegradation were identified using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS). This study highlights that the carbon and hydrogen fractionation patterns have the potential to elucidate the transformation of OPs in the environment.Graphical abstractDisplay OmittedHighlightsConcept using C and H isotope fractionation to analyze degradation of OPs is developed.Isotope fractionation patterns upon hydrolysis and radical oxidation are comparison.Dependence of isotope fractionation patterns on the chemical structure of OPs.Isotope fractionation pattern has potential to study the OPs in the environment.
机译: 摘要 连续且过量使用有机磷化合物(OPs)已导致环境污染,这引起了公众的关注。本研究调查了水生环境中OPs的同位素分馏模式,其取决于水解,光解和自由基氧化过程。对硫磷(EP)和甲基对硫磷(MP)的水解导致在较低pH(pH2–7,ε C =-6.9〜-6.0时明显的碳分馏EP为‰,MP为-10.5〜-9.9‰,但在较高pH(pH12)下无可检测到的碳分馏。在任何水解实验中均未观察到氢分馏。这些结果表明化合物特异性同位素分析(CSIA)可以区分两种不同的pH依赖的水解途径。在EP和UV的UV / H 2 O 2 光解过程中测定碳和氢同位素分馏磷酸三(2-氯乙基)酯(TCEP)。在EP的OH自由基反应过程中确定的恒定δ 2 H值表明,限速步骤是通过OH自由基对PS键的氧化攻击而进行的。显着的H同位素富集表明TCEP的OH自由基氧化是由UV / H 2 O 2 个过程(ε H = − 56±3‰)。进行Fenton反应以验证与自由基氧化有关的TCEP的H同位素富集,得出ε H 为-34±5‰。使用傅立叶变换离子回旋加速器共振质谱(FT-ICR MS)鉴定光降解过程中OP的转化产物。这项研究强调了碳和氢的分馏方式有可能阐明环境中OP的转化。 图形摘要 省略显示 突出显示 使用C和H同位素分级分离的概念分析OP的降解。 是水解和自由基氧化后的同位素分馏模式的比较。 同位素分馏模式与OP的化学结构有关。 同位素分馏模式有潜力研究环境。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号