首页> 外文期刊>The Science of the Total Environment >Operational optimization of a three-stage nitrification moving bed biofilm reactor (NMBBR) by obtaining enriched nitrifying bacteria: Nitrifying performance, microbial community, and kinetic parameters
【24h】

Operational optimization of a three-stage nitrification moving bed biofilm reactor (NMBBR) by obtaining enriched nitrifying bacteria: Nitrifying performance, microbial community, and kinetic parameters

机译:通过获得富集的硝化细菌优化三阶段硝化移动床生物膜反应器(NMBBR)的运行:硝化性能,微生物群落和动力学参数

获取原文
获取原文并翻译 | 示例
       

摘要

A two-sludge system consisting of A(2)/O (Anaerobic Anoxic Oxic) and NMBBR (Nitrification Moving Bed Biofilm Reactor) was developed. Stable and efficient denitrifying phosphorus removal can be realized by high-efficiency utilization of carbon sources in A(2)/O reactor with the electron acceptors of NOx--N in a three-stage NMBBR (consisting of N-1, N-2, N-3). The three-stage NMBBR was successfully started within 18 days without additional inoculation sludge. Then a long-term operation (22-120 d) for the optimization of nitrifying performance, microbial community, and kinetic parameters was investigated. The biofilm characteristics (MLSS and biofilm thickness) and real-time control parameters (DO and pH) initially revealed the differences of three stages, while FISH results confirmed the optimizing nitrifying bacteria populations including AOB, Nitrobacteria and Nitrospira (N-1: 5.94 +/- 0.12%; N-2: 8.26 +/- 0.42%; N-3: 10.06 +/- 0.27% on day 50), basically consisting with the qPCR results (N-1: 4.05%; N-2: 8.04%; N-3: 14.14%). The specific ammonium oxidation rate (SAOR: 3.24-10.02 mg/(gMLSS.h)) and temperature coefficient (theta: 1.008-1.011) based on temperature variation (15-35 degrees C) exhibited a strong resistant ability to low temperature operation. Moreover, half-saturation constants (K-N,K-AOB, K-N,K-NOB, K-O,K- AOB and K-O,K- NOB) fitted by Monod equation proved that DO diffusion played a significant role than substrate utilization (NH4+-N and NO2--N), but the diffusion resistance was negligible for flocs size smaller than 70 mu m. Additionally, the dominant NOB (mainly Nitrospira) due to a higher K-N,K-NOB and K-O,K-NOB was more sensitive to mass transfer and diffusion resistance, which was helpful to understand the microbial competition for short-cut nitrification between AOB and NOB. Based on the above mechanism analysis, the MBBR optimization for the design and operation was put forward. (C) 2019 Elsevier B.V. All rights reserved.
机译:开发了由A(2)/ O(厌氧缺氧)和NMBBR(硝化移动床生物膜反应器)组成的两污泥系统。通过在三级NMBBR(由N-1,N-2组成)中高效利用A(2)/ O反应器中的碳源和NOx-N的电子受体,可以实现稳定,有效的脱氮除磷,N-3)。三阶段NMBBR在18天内成功启动,没有额外的接种污泥。然后研究了长期操作(22-120 d)以优化硝化性能,微生物群落和动力学参数。生物膜特征(MLSS和生物膜厚度)和实时控制参数(DO和pH)最初揭示了三个阶段的差异,而FISH结果证实了优化的硝化细菌种群包括AOB,硝化细菌和硝化螺旋菌(N-1:5.94 + /-0.12%; N-2:8.26 +/- 0.42%; N-3:在第50天为10.06 +/- 0.27%),基本上由qPCR结果组成(N-1:4.05%; N-2:8.04 %; N-3:14.14%)。基于温度变化(15-35℃)的特定铵氧化速率(SAOR:3.24-10.02mg /(gMLSS.h))和温度系数(θ:1.008-1.011)表现出对低温操作的强抵抗力。此外,通过Monod方程拟合的半饱和常数(KN,K-AOB,KN,K-NOB,KO,K-AOB和KO,K-NOB)证明,DO扩散比底物利用率(NH4 + -N)起重要作用。和NO2--N),但是对于小于70μm的絮状物,其扩散阻力可忽略不计。此外,由于较高的KN,K-NOB和KO,K-NOB,占优势的NOB(主要为硝化螺菌)对传质和扩散阻力更为敏感,这有助于了解微生物竞争AOB和AOB之间的短程硝化反应NOB。在以上机理分析的基础上,提出了MBBR的设计和运行优化。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号