首页> 外文期刊>Scanning >Fabrication of Nanodot Plasmonic Waveguide Structures Using FIB Milling and Electron Beam-Induced Deposition
【24h】

Fabrication of Nanodot Plasmonic Waveguide Structures Using FIB Milling and Electron Beam-Induced Deposition

机译:FIB铣削和电子束诱导沉积法制备纳米点等离子波导结构

获取原文
获取原文并翻译 | 示例
           

摘要

Fabrication of metallic Au nanopillars and linear arrays of Au-containing nanodots for plasmonic waveguides is reported in this article by two different processes-focused ion beam (FIB) milling of deposited thin films and electron beam-induced deposition (EBID) of metallic nanostructures from an organometallic precursor gas. Finite difference time domain (FDTD) modeling of electromagnetic fields around metallic nanostructures was used to predict the optimal size and spacing between nanostructures useful for plasmonic waveguides. Subsequently, a multi-step FIB fabrication method was developed for production of metallic nanorods and nanopillars of the size and geometry suggested by the results of the FDTD simulations. Nanostructure fabrication was carried out on planar substrates including Au-coated glass, quartz, and mica slides as well as cleaved 4-mode optical fibers. In the second fabrication process, EBID was utilized for the development of similar nanostructures on planar Indium Tin Oxide and Titanium-coated glass substrates. Each method allows formation of nanostructures such that the plas-mon resonances associated with the nanostructures could be engineered and precisely controlled by controlling the nanostructure size and shape. Linear arrays of low aspect ratio nanodot structures ranging in diameter between 50-70 nm were fabricated using EBID. Preliminary dark field optical microscopy demonstrates differences in the plasmonic response of the fabricated structures.
机译:本文通过两种不同的工艺报道了用于等离子波导管的金属Au纳米柱的制造和含Au纳米点的线性阵列-沉积薄膜的聚焦离子束(FIB)研磨和电子束诱导的金属纳米结构的沉积(EBID)有机金属前体气体。金属纳米结构周围电磁场的有限差分时域(FDTD)建模用于预测对等离子波导管有用的纳米结构之间的最佳尺寸和间距。随后,开发了一种多步骤FIB制造方法,用于生产FDTD模拟结果所建议的尺寸和几何形状的金属纳米棒和纳米柱。纳米结构制造是在平面基材上进行的,这些基材包括镀金的玻璃,石英和云母片以及开裂的四模光纤。在第二个制造过程中,EBID被用于在平面氧化铟锡和镀钛玻璃基板上开发相似的纳米结构。每种方法都允许形成纳米结构,从而可以通过控制纳米结构的大小和形状来设计和精确控制与纳米结构相关的等离子共振。使用EBID制造直径在50-70 nm之间的低纵横比纳米点结构的线性阵列。初步的暗场光学显微镜证明了所制造结构的等离子体响应不同。

著录项

  • 来源
    《Scanning》 |2009年第4期|139-146|共8页
  • 作者单位

    U. S. Army Research Office, Research Triangle Park, Durham, North Carolina Fitzpatrick Institute for Photonics, Duke University, Durham, North Carolina;

    U. S. Army Research Office, Research Triangle Park, Durham, North Carolina Fitzpatrick Institute for Photonics, Duke University, Durham, North Carolina;

    Department of Physics and Astronomy, Appalachian State University, Boone, North Carolina;

    Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee;

    Department of Physics and Astronomy, Appalachian State University, Boone, North Carolina;

    Fitzpatrick Institute for Photonics, Duke University, Durham, North Carolina;

    Department of Physics and Astronomy, Appalachian State University, Boone, North Carolina;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    electron beam-induced deposition; surface plasmons; nanostructures; localized surface plasmon resonance; plasmonic waveguide;

    机译:电子束诱导沉积;表面等离激元纳米结构局部表面等离子体共振等离子体波导;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号