...
首页> 外文期刊>Russian electrical engineering >Modification of an Aircraft Engine Free Turbine Contour
【24h】

Modification of an Aircraft Engine Free Turbine Contour

机译:飞机发动机自由涡轮轮廓的修改

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Multimode control of a turbofan is carried out by an engine control unit (ECU). ECU programs provide flight dynamic control under changes in controlled fluctuations within a given range. The effect of uncontrolled disturbances (changes in air parameters exceeding limits, fuel consumption due to leakage in the dispenser, changes in engine parameters, etc.) may disrupt the normal flight conditions of the aircraft. To counter this, it is proposed to correct ECU programs by adding adaptive neural control in all contours. Replacement of the standard free turbine speed control contour by an adaptive neural controller (ANC), which includes an adaptive fuzzifier and defuzzification unit, was shown as an example. A choice of the fuzz-ifier term set in relation to the properties of a dispenser which excludes a statistic error in the free turbine speed control contour was shown. A neuron with sequential learning provides adaptation of the fuzzifier. An algorithm for correction of activated grades of membership of the fuzzifier at a particular time changes the numerical value of synapses per iteration. Given waveforms confirm the possibility of using the adaptive neural control for stabilizing the free turbine fan speed. However, stabile maintenance of the free turbine fan speed causes self-oscillations due to imbalance of generated and consumed power of the aircraft engine. This disadvantage can be eliminated with the aid of a built-in rotation torque sensor in a free turbine, which can be used to determine the power consumption of the aircraft engine. Introduction of power feedback in the energy load and generation contours eliminates self-oscillations. The simultaneous use of adaptive neural control and power feedback makes this paper topical.
机译:涡轮风扇的多模式控制由发动机控制单元(ECU)进行。 ECU程序根据给定范围内受控波动的变化提供飞行动态控制。不受控制的干扰(空气参数变化超过限制,由于分配器泄漏造成的燃油消耗,发动机参数变化等)的影响可能会扰乱飞机的正常飞行状态。为了解决这个问题,建议通过在所有轮廓中添加自适应神经控制来校正ECU程序。作为示例,显示了由自适应神经控制器(ANC)替代标准的自由涡轮机速度控制轮廓,该控制器包括自适应模糊器和解模糊单元。显示了与分配器的性能有关的模糊器术语集的选择,该术语排除了自由涡轮速度控制轮廓中的统计误差。具有顺序学习功能的神经元可以对模糊器进行调整。在特定时间校正模糊器隶属度的激活等级的算法会更改每次迭代的突触数值。给定的波形证实了使用自适应神经控制来稳定自由涡轮风扇速度的可能性。然而,由于飞机发动机的产生和消耗的动力的不平衡,自由涡轮风扇速度的稳定维持导致自激。借助于自由涡轮机中的内置旋转扭矩传感器可以消除该缺点,该旋转扭矩传感器可以用于确定飞机发动机的功率消耗。在能量负载和发电轮廓中引入功率反馈消除了自激振荡。自适应神经控制和功率反馈的同时使用使本文成为主题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号