首页> 外文期刊>Rock Mechanics and Rock Engineering >Linear Elastic and Cohesive Fracture Analysis to Model Hydraulic Fracture in Brittle and Ductile Rocks
【24h】

Linear Elastic and Cohesive Fracture Analysis to Model Hydraulic Fracture in Brittle and Ductile Rocks

机译:线性弹性和内聚断裂分析,模拟脆性和延性岩石中的水力断裂

获取原文
获取原文并翻译 | 示例
           

摘要

Hydraulic fracturing technology is being widely used within the oil and gas industry for both waste injection and unconventional gas production wells. It is essential to predict the behavior of hydraulic fractures accurately based on understanding the fundamental mechanism(s). The prevailing approach for hydraulic fracture modeling continues to rely on computational methods based on Linear Elastic Fracture Mechanics (LEFM). Generally, these methods give reasonable predictions for hard rock hydraulic fracture processes, but still have inherent limitations, especially when fluid injection is performed in soft rock/sand or other non-conventional formations. These methods typically give very conservative predictions on fracture geometry and inaccurate estimation of required fracture pressure. One of the reasons the LEFM-based methods fail to give accurate predictions for these materials is that the fracture process zone ahead of the crack tip and softening effect should not be neglected in ductile rock fracture analysis. A 3D pore pressure cohesive zone model has been developed and applied to predict hydraulic fracturing under fluid injection. The cohesive zone method is a numerical tool developed to model crack initiation and growth in quasi-brittle materials considering the material softening effect. The pore pressure cohesive zone model has been applied to investigate the hydraulic fracture with different rock properties. The hydraulic fracture predictions of a three-layer water injection case have been compared using the pore pressure cohesive zone model with revised parameters, LEFM-based pseudo 3D model, a Perkins-Kern–Nordgren (PKN) model, and an analytical solution. Based on the size of the fracture process zone and its effect on crack extension in ductile rock, the fundamental mechanical difference of LEFM and cohesive fracture mechanics-based methods is discussed. An effective fracture toughness method has been proposed to consider the fracture process zone effect on the ductile rock fracture.
机译:水力压裂技术已在石油和天然气行业广泛用于废物注入井和非常规天然气生产井。在了解基本机理的基础上,准确预测水力压裂行为至关重要。水力压裂建模的主流方法继续依靠基于线性弹性断裂力学(LEFM)的计算方法。通常,这些方法可以对硬岩的水力压裂过程做出合理的预测,但仍具有固有的局限性,尤其是在软岩/砂岩或其他非常规地层中进行流体注入时。这些方法通常对裂缝的几何形状给出非常保守的预测,而对所需的断裂压力的估算却不准确。基于LEFM的方法无法对这些材料进行准确预测的原因之一是,在延性岩石断裂分析中,不应忽略裂纹尖端之前的断裂过程区和软化效果。已经开发了3D孔隙压力内聚区模型,并将其用于预测流体注入下的水力压裂。内聚区法是一种数值工具,考虑到材料的软化效果,可以用来模拟准脆性材料中的裂纹萌生和扩展。孔隙压力粘性带模型已被用于研究不同岩石特性的水力压裂。使用具有修正参数的孔隙压力内聚区模型,基于LEFM的伪3D模型,Perkins-Kern-Nordgren(PKN)模型和分析解决方案,对三层注水井的水力压裂预测进行了比较。根据断裂过程带的大小及其对延性岩石中裂纹扩展的影响,讨论了LEFM的基本力学差异和基于内聚断裂力学的方法。提出了一种有效的断裂韧性方法来考虑断裂过程带对延性岩石断裂的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号