首页> 外文期刊>Robotics and Computer-Integrated Manufacturing >Base position optimization of mobile manipulators for machining large complex components
【24h】

Base position optimization of mobile manipulators for machining large complex components

机译:用于加工大型复杂组件的移动操纵器的基础位置优化

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

With good mobility and high flexibility, the mobile manipulator shows a broad application prospect in the machining of large complex components. In these applications, in order to fully utilize the capabilities of the robot, it is usually necessary to design a series of suitable working positions (i.e. robot's base position) for the mobile manipulator. However, the performance distribution of the robot in the task space is highly nonlinear, which makes it difficult to determine the optimal base positions. Therefore, this paper proposes a new base position optimization method, which can accurately find the optimal base position that takes into account both kinematics and stiffness performance. First, a task-oriented performance index MSPI (mean stiffness performance index) is proposed to evaluate the global stiffness performance of the robot. Based on MSPI, an optimization model considering multiple constraints such as joint range, joint speed, singular avoidance and collision avoidance is established. The optimization model is solved by sparse uniform grid decomposition and Sequential Quadratic Programming (SQP) method, the former is used to find a suitable initial value, the latter is used to determine the optimal base position. Finally, simulation analysis and experiments confirmed the effectiveness of the optimization method and the correctness of the performance index MSPI.
机译:具有良好的移动性和高灵活性,移动操纵器在大型复杂部件的加工中显示了广泛的应用前景。在这些应用中,为了充分利用机器人的能力,通常需要为移动操纵器设计一系列合适的工作位置(即机器人的基础位置)。然而,任务空间中机器人的性能分布是高度非线性的,这使得难以确定最佳基位位置。因此,本文提出了一种新的基本位置优化方法,可以准确地找到考虑运动学和刚度性能的最佳基础位置。首先,提出了一个面向任务的性能指标MSPI(平均刚度性能指数)来评估机器人的全球刚度性能。基于MSPI,建立了考虑多个约束的优化模型,如关节范围,关节速度,单次避免和碰撞避免。优化模型通过稀疏均匀网格分解和顺序二次编程(SQP)方法来解决,前者用于找到合适的初始值,后者用于确定最佳基础位置。最后,仿真分析和实验证实了优化方法的有效性和性能指标MSPI的正确性。

著录项

  • 来源
    《Robotics and Computer-Integrated Manufacturing》 |2021年第8期|102138.1-102138.12|共12页
  • 作者单位

    State Key Laboratory of Digital Manufacturing Equipment and Technology Huazhong University of Science and Technology Wuhan Hubei 430074 China;

    State Key Laboratory of Digital Manufacturing Equipment and Technology Huazhong University of Science and Technology Wuhan Hubei 430074 China;

    State Key Laboratory of Digital Manufacturing Equipment and Technology Huazhong University of Science and Technology Wuhan Hubei 430074 China;

    State Key Laboratory of Digital Manufacturing Equipment and Technology Huazhong University of Science and Technology Wuhan Hubei 430074 China;

    State Key Laboratory of Digital Manufacturing Equipment and Technology Huazhong University of Science and Technology Wuhan Hubei 430074 China;

    State Key Laboratory of Digital Manufacturing Equipment and Technology Huazhong University of Science and Technology Wuhan Hubei 430074 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Base position optimization; Mobile manipulators; Large complex components; Kinematic performance; Stiffness performance;

    机译:基地优化;移动操纵器;大型复杂组件;运动表现;僵硬性能;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号