Highl'/> Modeling and calibration of high-order joint-dependent kinematic errors for industrial robots
首页> 外文期刊>Robotics and Computer-Integrated Manufacturing >Modeling and calibration of high-order joint-dependent kinematic errors for industrial robots
【24h】

Modeling and calibration of high-order joint-dependent kinematic errors for industrial robots

机译:工业机器人高阶关节相关运动误差的建模与标定

获取原文
获取原文并翻译 | 示例
           

摘要

HighlightsRobot kinematic errors, both static and joint-dependent, were classified.A new robot calibration and compensation methodology was presented.The new method is capable of reducing high-order joint-dependent kinematic errors.AbstractRobot positioning accuracy is critically important in many manufacturing applications. While geometric errors such as imprecise link length and assembly misalignment dominate positioning errors in industrial robots, significant errors also arise from non-uniformities in bearing systems and strain wave gearings. These errors are characteristically more complicated than the fixed geometric errors in link lengths and assembly. Typical robot calibration methods only consider constant kinematic errors, thus, neglecting complex kinematic errors and limiting the accuracy to which robots can be calibrated. In contrast to typical calibration methods, this paper considers models containing both constant and joint-dependent kinematic errors. Constituent robot kinematic error sources are identified and kinematic error models are classified for each error source. The constituent models are generalized into a single robot kinematic error model with both constant and high-order joint-dependent error terms. Maximum likelihood estimation is utilized to identify error model parameters using measurements obtained over the measurable joint space by a laser tracker. Experiments comparing the proposed and traditional calibration methods implemented on a FANUC LR Mate 200irobot are presented and analyzed. While the traditional constant kinematic error model describes 79.4% of the measured error, the proposed modeling framework, constructed from measurements of 250 poses, describes 97.0% of the measured error. The results demonstrate that nearly 20% of the kinematic error in this study can be attributed to complex, joint-dependent error sources.
机译: 突出显示 对机器人的运动学错误(包括静态误差和关节误差)进行了分类。 提出了一种新的机器人校准和补偿方法。 < / ce:list-item> 新方法是 ce:abstract> 摘要 机器人定位精度在许多制造应用中至关重要。尽管几何误差(例如,不精确的连杆长度和装配不对中)在工业机器人中的定位误差中占主导地位,但轴承系统和应变波齿轮装置的不均匀性也会引起很大的误差。这些误差在特征上比链节长度和装配中的固定几何误差更为复杂。典型的机器人校准方法仅考虑恒定的运动学误差,因此忽略了复杂的运动学误差并限制了可以校准机器人的精度。与典型的校准方法相比,本文考虑的模型既包含常量误差,也包含依赖于关节的运动学误差。识别出组成机器人运动学错误源,并为每个错误源分类运动学错误模型。组成模型被概括为具有恒定和高阶关节相关误差项的单个机器人运动学误差模型。利用最大似然估计,使用激光跟踪器在可测量关节空间上获得的测量值来识别误差模型参数。提出并分析了在FANUC LR Mate 200 i 机器人上实施的建议校准方法和传统校准方法的实验。传统的恒定运动误差模型描述了79.4%的测量误差,而所提出的建模框架是基于250个姿势的测量结果,描述了97.0%的测量误差。结果表明,本研究中将近20%的运动学误差可归因于复杂的关节相关误差源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号