...
首页> 外文期刊>Rendiconti del Circolo Matematico di Palermo >Tight bounds for rational sums of squares over totally real fields
【24h】

Tight bounds for rational sums of squares over totally real fields

机译:完全实场上平方有理和的紧边界

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Let K be a totally real Galois number field. Hillar proved that if f ∈ ℚ[x 1, ..., x n ] is a sum of m squares in K[x 1, ..., x n ], then f is a sum of N(m) squares in ℚ[x 1, ..., x n ], where N(m) ≤ 2[K:ℚ]+1 · $nleft( {_2^{[K:mathbb{Q}] + 1} } right)n$nleft( {_2^{[K:mathbb{Q}] + 1} } right)n · 4m. We show in fact that N(m) ≤ m + 4$nleftlceil {tfrac{m}n{4}} rightrceil n$nleftlceil {tfrac{m}n{4}} rightrceil n ([K: ℚ] − 1), our proof being constructive too. Moreover, we give some examples where this bound is sharp, for instance in the case of quadratic extensions. We also extend our results to the setting of non-commutative polynomials over ℚ.
机译:令K为完全实数的Galois数字段。 Hillar证明如果f∈ℚ[x 1 ,...,x n ]是K [x 1 中m个平方的和。 ,...,x n ],则f是ℚ[x 1 ,...,x n < / sub>],其中N(m)≤2 [K:ℚ] +1 ·$ nleft({_2 ^ {[[K:mathbb {Q}] + 1}} right)n $ nleft({_2 ^ {[K:mathbb {Q}] + 1}} right)n·4m。实际上,我们证明N(m)≤m + 4 $ nleftlceil {tfrac {m} n {4}} rightrceil n $ nleftlceil {tfrac {m} n {4}} rightrceil n([K:ℚ] − 1) ,我们的证明也具有建设性。此外,我们给出了一些示例,其中该边界是尖锐的,例如在二次扩展的情况下。我们还将结果扩展到ℚ上非交换多项式的设置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号