...
首页> 外文期刊>Renewable energy >Smart fatigue load control on the large-scale wind turbine blades using different sensing signals
【24h】

Smart fatigue load control on the large-scale wind turbine blades using different sensing signals

机译:使用不同的传感信号对大型风力涡轮机叶片进行智能疲劳负载控制

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presented a numerical study on the smart fatigue load control of a large-scale wind turbine blade. Three typical control strategies, with sensing signals from flapwise acceleration, root moment and tip deflection of the blade, respectively, were mainly investigated on our newly developed aero-servoelastic platform. It was observed that the smart control greatly modified in-phased flow-blade interaction into an anti-phased one at primary 1P mode, significantly enhancing the damping of the fluid-structure system and subsequently contributing to effectively attenuated fatigue loads on the blade, drive-chain components and tower. The aero-elastic physics behind the strategy based on the flapwise root moment, with stronger dominant load information and higher signal-to-noise ratio, was more drastic, and thus outperformed the other two strategies, leading to the maximum reduction percentages of the fatigue load within a range of 12.0-22.5%, in contrast to the collective pitch control method. The finding pointed to a crucial role the sensing signal played in the smart blade control. In addition, the performances within region III were much better than those within region II, exhibiting the benefit of the smart rotor control since most of the fatigue damage was believed to be accumulated beyond the rated wind speed. (C) 2015 Elsevier Ltd. All rights reserved.
机译:本文对大型风力发电机叶片的智能疲劳负荷控制进行了数值研究。在我们最新开发的航空-气动弹性平台上,主要研究了三种典型的控制策略,分别从叶片的襟翼方向加速度,根力矩和叶尖偏斜感测信号。观察到,智能控制大大地将同相流-叶片相互作用修改为主要1P模式下的反相流,从而显着增强了流体结构系统的阻尼,从而有效地降低了叶片驱动装置上的疲劳载荷。 -链组件和塔。基于拍翼方向根矩的策略背后的气动弹性物理,具有更强的主载荷信息和更高的信噪比,更加剧烈,因此优于其他两种策略,从而最大程度地减少了疲劳与集体变桨控制方法相比,载荷在12.0-22.5%的范围内。这一发现指出了传感信号在智能刀片控制中所起的关键作用。此外,区域III的性能比区域II的性能要好得多,这显示出智能转子控制的优势,因为大多数疲劳损伤被认为是累积超过额定风速的。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号