首页> 外文期刊>Renewable energy >Solar evaporation via nanofluids: A comparative study
【24h】

Solar evaporation via nanofluids: A comparative study

机译:通过纳米流体的太阳蒸发:比较研究

获取原文
获取原文并翻译 | 示例
       

摘要

Vaporisation (evaporation and boiling) through direct absorption solar collectors (DASCs) has recently drawn significant attention. Many studies suggested that plasmonic nanoparticles, such as gold nano particles, can significantly enhance the photo-thermal conversion efficiency of DASCs. However, there is still a lack of comparative studies of the feasibility of using gold nanoparticles for solar applications. This study performed well-controlled experiments for two different categorised particles, i.e., gold and carbon black suspended in water, and assessed their performance in terms of evaporation rate, materials cost and energy consumption. The results show that gold nanofluids are not feasible for solar evaporation applications, where the cost of producing 1 g/s vapour is similar to 300 folds higher than that produced by carbon black nanofluids. This infeasibility is mainly due to the high cost and the low absorbance of gold comparing to carbon black nanoparticles. Moreover, this work reveals that with the increase of nano particle concentration or incident solar radiation, more energy is trapped in a small volume of the nanofluid near the interface, resulting in a local higher temperature and a higher evaporation rate. For efficient steam production, future optimisation of the system should consider concentrating more solar energy at the interface to maximize the energy consumed for evaporation. (C) 2018 Elsevier Ltd. All rights reserved.
机译:通过直接吸收式太阳能收集器(DASC)进行的汽化(蒸发和沸腾)近来引起了广泛关注。许多研究表明,等离子纳米颗粒(例如金纳米颗粒)可以显着提高DASC的光热转换效率。然而,仍然缺乏关于将金纳米颗粒用于太阳能应用的可行性的比较研究。这项研究对两种不同分类的颗粒(即悬浮在水中的金和炭黑)进行了良好控制的实验,并根据蒸发速率,材料成本和能耗评估了它们的性能。结果表明,金纳米流体对于太阳能蒸发应用是不可行的,其中产生1 g / s蒸气的成本比炭黑纳米流体产生的成本高300倍。与炭黑纳米颗粒相比,这种不可行主要是由于金的高成本和低吸光度。而且,这项工作表明,随着纳米粒子浓度的增加或入射太阳辐射的增加,更多的能量被捕获在界面附近的一小部分纳米流体中,从而导致局部更高的温度和更高的蒸发速率。为了高效地生产蒸汽,系统的未来优化应考虑将更多的太阳能集中在界面上,以最大化蒸发所消耗的能量。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号