首页> 外文期刊>Renewable energy >Residential solar water heaters in Brisbane, Australia: Key performance parameters and indicators
【24h】

Residential solar water heaters in Brisbane, Australia: Key performance parameters and indicators

机译:澳大利亚布里斯班的家用太阳能热水器:关键性能参数和指标

获取原文
获取原文并翻译 | 示例
       

摘要

A multi-parametric sensitivity analysis of Solar Water Heater (SWH) systems was undertaken for the city of Brisbane in Australia using computational models calibrated by experimental data. The models were calculated using EnergyPlus 8.6. The following technical specification parameters were assessed in the modelling: (i) solar collector efficiency; (ii) solar collector area; (iii) tank volume; (iv) tank heat loss; (v) electric back-up heating power rate; (vi) electric back-up heating position (height) for vertical tanks; and (vii) electric back-up heating temperature range. The site-specific parameters included: (i) solar collector direction; (ii) solar collector tilt angle; (iii) solar collector shadowing; (iv) solar collector dust accumulation; (v) hot water pipe insulation; (vi) hot water pipe length; (vii) electricity tariff time-of-use; and (viii) cold water temperature. User behaviour patterns were comprised of the following parameters: (i) end-use water temperature; (ii) end-use water demand; and (iii) end-use time-of-use. For all parameters, two system types were assessed, namely: (i) thermosiphon systems with natural (passive) circulation in collectors and unstratified horizontal hot water storage tanks; and (ii) split systems with forced (pumped) circulation in collectors and stratified vertical hot water storage tanks. The performance of SWHs was analysed considering both energy performance indicators (i.e. total and peak-hour energy consumption, solar fraction and energy intensity) and level of service indicators (i.e. compliance with recommended hot water temperatures for Legionella spp. control and comfort levels). Notwithstanding the prevalence of thermosiphon systems among SWH technologies, results indicate that split systems usually outperformed thermosiphon systems both in terms of energy efficiency and level of service, and hence should be a preferred option for energy efficiency initiatives and policies. (C) 2017 Elsevier Ltd. All rights reserved.
机译:使用实验数据校准的计算模型,对澳大利亚布里斯班市进行了太阳能热水器(SWH)系统的多参数敏感性分析。使用EnergyPlus 8.6计算模型。在建模中评估了以下技术规格参数:(i)太阳能收集器效率; (ii)太阳能集热区; (iii)油箱容积; (iv)储罐热量损失; (v)备用电加热功率费率; (vi)垂直罐的备用电加热位置(高度); (vii)备用电加热温度范围。特定地点的参数包括:(i)太阳能收集器的方向; (ii)太阳能收集器的倾斜角度; (iii)太阳能收集器的阴影; (iv)太阳能集热器的灰尘积聚; (v)热水管保温; (vi)热水管的长度; (vii)电费使用时间; (viii)冷水温度。用户行为模式包括以下参数:(i)最终用水温度; (ii)最终用途的用水需求; (iii)最终使用时间。对于所有参数,评估了两种系统类型,即:(i)集热器和非分层卧式热水储罐中具有自然(被动)循环的热虹吸系统; (ii)在集热器和分层的垂直热水储罐中具有强制(泵送)循环的分流系统。分析SWHs的性能时要同时考虑能源性能指标(即总和高峰时段的能源消耗,太阳能比例和能源强度)和服务水平指标(即符合军团菌属建议的热水温度控制和舒适水平)。尽管在SWH技术中普遍存在热虹吸系统,但结果表明,在能效和服务水平方面,分体式系统通常都优于热虹吸系统,因此应成为能效举措和政策的首选方案。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号