首页> 外文期刊>Renewable energy >Tailoring triple charge conduction in BaCo_(0.2)Fe_(0.1)Ce_(0.2)Tm_(0.1)Zr_(0.3)Y_(0.1)O_(3-δ) semiconductor electrolyte for boosting solid oxide fuel cell performance
【24h】

Tailoring triple charge conduction in BaCo_(0.2)Fe_(0.1)Ce_(0.2)Tm_(0.1)Zr_(0.3)Y_(0.1)O_(3-δ) semiconductor electrolyte for boosting solid oxide fuel cell performance

机译:在Baco_(0.2)FE_(0.1)CE_(0.2)TM_(0.1)ZR_(0.1)Y_(0.1)O_(3-Δ)半导体电解质中剪裁三重电荷传导,用于提高固体氧化物燃料电池性能

获取原文
获取原文并翻译 | 示例
       

摘要

Introducing multiple-ionic transport through a semiconductor-electrolyte is a promising approach to realize the low-temperature operation of SOFCs. Herein, we designed and synthesized a single-phase Cedoped BaCo0.2Fe0.3-xTm0.1Zr0.3Y0.1O3-delta semiconductor-electrolyte possessing triple-charge (H+/O2-/e(-)) conduction ability. Two different compositions are synthesized: BaCo0.2Fe0.3-xCexTm0.1Zr0.3Y0.1O3-delta [x = 0.1-0.2]. The 20% doped Ce composition exhibits an outstanding oxide-ion and protonic conductivity of 0.193 S cm(-1) and 0.09 S cm(-1) at 530 degrees C and the fuel cell utilizing BaCo0.2Fe0.2Ce0.2Tm0.1Zr0.3Y0.1O3-delta as an electrolyte yields an excellent power density of 873 mW cm(-2) at 530 degrees C. Moreover, the fuel cell performed reasonably well (383 mW cm(-2)) even at a low temperature of 380 degrees C: Furthermore, the 10% Ce-doped utilized in fuel cell device illustrates lower performance (661 mW cm(-2) at 530 degrees C and 260 mW cm(-2) at 380 degrees C). Successful doping of Ce supports the formation of oxygenvacancies at the B-site of perovskite and adjusting the ratio of Fe in the compositions. Moreover, the presence of Tm also assist in the creation of oxygen vacancies. Furthermore, the boosting of electrochemical performance and ionic conductivity of applied materials are enlightened by tuning the energyband structure via employing the UPS and UVeVis. The physical characterizations and verification of dual-ions (H+/O-2(-)) in the semiconductor materials are performed via different electrochemical, spectroscopic, and microscopic techniques. A systematic study revealed triple charge conduction in this promising material, which helps in boosting the electrochemical performance of the LT-SOFC. (c) 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
机译:通过半导体电解质引入多离子传输是一种有望的方法来实现SOFC的低温操作。在此,我们设计和合成了具有三荷(H + / O 2-/ E()的传导能力的单相嵌入式BacoO 2 Fe0.3-XTM0.1Zr0.3Y0.1O3-Delta半导体 - 电解质。合成两种不同的组合物:Baco0.2Fe0.3-xCextm0.1zr0.3y0.1o3-delta [x = 0.1-0.2]。 20%掺杂的CE组合物在530℃和利用Baco0.2FE0.2TM0.2TM0.2TM0.1ZR0的燃料电池处具有0.193秒(-1)和0.09scm(-1)的优异氧化物离子和蛋白导电率。作为电解质的3Y0.1O3-ΔA在530℃下产生优异的873mm cm(-2)的功率密度。此外,燃料电池即使在380的低温下也表现出合理良好(383mm(-2))此外,燃料电池装置中使用的10%CE掺杂的CE掺杂,在380℃下,在530℃和260mW cm(-2)下的性能下降(661mm cm(-2)。 Ce的成功掺杂支持钙钛矿B-位点的形成,并调节组合物中的Fe比率。此外,TM的存在还有助于创造氧气职位空缺。此外,通过采用UPS和UVEVI调节能量带结构来启发应用材料的电化学性能和离子电导率的提高。通过不同的电化学,光谱和微观技术进行半导体材料中双离子(H + / O-2())的物理特征和验证。系统研究揭示了该有希望的材料中的三重电荷传导,这有助于提高LT-SOFC的电化学性能。 (c)2021提交人。由elsevier有限公司出版。这是CC By-NC-ND许可下的开放式访问文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。

著录项

  • 来源
    《Renewable energy》 |2021年第7期|336-349|共14页
  • 作者单位

    Hubei Univ Fac Phys & Elect Sci Hubei Collaborat Innovat Ctr Adv Organ Chem Mat Wuhan 430062 Hubei Peoples R China;

    Southeast Univ Sch Energy & Environm Jiangsu Prov Key Lab Solar Energy Sci & Technol Energy Storage Joint Res Ctr 2 Si Pai Lou Nanjing 210096 Peoples R China;

    China Univ Geosci Engn Res Ctr Nanogeo Mat Minist Educ Dept Mat Sci & Chem 388 Lumo Rd Wuhan 430074 Peoples R China;

    Hubei Univ Fac Phys & Elect Sci Hubei Collaborat Innovat Ctr Adv Organ Chem Mat Wuhan 430062 Hubei Peoples R China;

    Hubei Univ Fac Phys & Elect Sci Hubei Collaborat Innovat Ctr Adv Organ Chem Mat Wuhan 430062 Hubei Peoples R China;

    Zhejiang Univ Zhejiang Prov Key Lab Quantum Technol & Devices Hangzhou 310027 Peoples R China|Zhejiang Univ Dept Phys Hangzhou 310027 Peoples R China|Zhejiang Univ State Key Lab Silicon Mat Hangzhou 310027 Peoples R China;

    Hubei Univ Fac Phys & Elect Sci Hubei Collaborat Innovat Ctr Adv Organ Chem Mat Wuhan 430062 Hubei Peoples R China|Taiyuan Univ Sci & Technol Fac Mat Sci & Engn Waliu Rd 66 Taiyuan Shanxi Peoples R China;

    Southeast Univ Sch Energy & Environm Jiangsu Prov Key Lab Solar Energy Sci & Technol Energy Storage Joint Res Ctr 2 Si Pai Lou Nanjing 210096 Peoples R China;

    Hubei Univ Fac Phys & Elect Sci Hubei Collaborat Innovat Ctr Adv Organ Chem Mat Wuhan 430062 Hubei Peoples R China|Aalto Univ Dept Appl Phys New Energy Technol Grp Sch Sci POB 15100 FI-00076 Espoo Finland;

    Univ Ulsan Dept Phys Ulsan 44610 South Korea|Univ Ulsan Energy Harvest Storage Res Ctr EHSRC Ulsan 44610 South Korea;

    Southeast Univ Sch Energy & Environm Jiangsu Prov Key Lab Solar Energy Sci & Technol Energy Storage Joint Res Ctr 2 Si Pai Lou Nanjing 210096 Peoples R China|Aalto Univ Dept Appl Phys New Energy Technol Grp Sch Sci POB 15100 FI-00076 Espoo Finland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Semiconductor; Doping; Triple charge conduction; Energy band alignment; Fuel cell;

    机译:半导体;掺杂;三荷传导;能带对准;燃料电池;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号