首页> 外文期刊>Renewable energy >Transient characteristics during power-off process in a shaft extension tubular pump by using a suitable numerical model
【24h】

Transient characteristics during power-off process in a shaft extension tubular pump by using a suitable numerical model

机译:使用合适的数值模型在轴延伸管泵中断电过程中的瞬态特性

获取原文
获取原文并翻译 | 示例
           

摘要

For most of low-head pump stations, pumps simultaneously undertake important tasks such as flood control, irrigation and drainage where more attention should be paid on involved hydraulic stability. In order to establish a suitable numerical prediction model, two kinds of water surface treatment namely volume of fluids (VOF) and rigid-lid hypothesis (RLH) methods, for upstream and downstream reservoirs, are presented and corresponding results are compared. System transient characteristics during power-off process are predicted, where the obtained maximum runaway speed by VOF method is found to be closer to the one from experimental results. The dynamic parameters of VOF method change slower than those of RLH method and the static pressure peak value is smaller. The usage of VOF method to water dynamics at the reservoir's free surface makes the water flow in reservoirs relatively smooth, whereas large-scale vortices appear in reservoirs for the RLH method. Moreover, the turbulent kinetic energy is found to be larger if the reservoir's free surface is not taken into consideration. This article established a novel and accurate prediction model, which otherwise would provide the foundation of further studies in terms of transient characteristics prediction within pumping stations taking into account the air-water interactions. (C) 2020 Elsevier Ltd. All rights reserved.
机译:对于大多数低头泵站,泵同时承担了洪水控制,灌溉和排水等重要任务,在涉及液压稳定性时应更加关注。为了建立合适的数值预测模型,提出了两种水面处理,即流体(VOF)和刚性 - 盖假设(RLH)方法,用于上游和下游贮存器,并进行相应的结果。预测电源处理过程中的系统瞬态特性,其中发现通过VOF方法获得的最大失控速度更接近实验结果。 VOF方法的动态参数比RLH方法的变化慢,静态压力峰值较小。 vof方法对水库自由表面的水动力学的用法使水流在储层中相对光滑,而大规模涡流出现在RLH方法的储层中。此外,如果没有考虑储液器的自由表面,发现湍流动能被发现更大。本文建立了一种新颖且准确的预测模型,否则将在泵站内的瞬态特征预测方面提供进一步研究的基础,考虑到空气 - 水相互作用。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号