首页> 外文期刊>Renewable energy >Tri-objective optimization of a hybrid solar-assisted power-refrigeration system working with supercritical carbon dioxide
【24h】

Tri-objective optimization of a hybrid solar-assisted power-refrigeration system working with supercritical carbon dioxide

机译:具有超临界二氧化碳的混合太阳能辅助功率 - 制冷系统的三客观优化

获取原文
获取原文并翻译 | 示例
       

摘要

The objective of current research is the optimization of a novel parabolic trough solar collector assisted power-refrigeration system. The innovative system utilizes CO2 as a working fluid, which is a natural medium and consisted of three sub-cycles: a Brayton cycle, a Rankine cycle, and a vapor compression refrigeration cycle. The main advantages of utilizing CO2 as working fluid are; available in large quantities, environmentally friendly properties such as negligible global warming potential and zero-ozone depletion, and excellent thermodynamic properties. The required heat energy demand of the system is supplied by solar energy using a PTSC. The thermodynamic performance of the system is examined in terms of energy and exergy analyses for a specified design configuration. An economic analysis of the suggested system is carried out for the optimization procedure. With the optimization results, the optimum design parameters are determined for better system operating conditions. The results of tri-objective optimization represent that the total exergy destruction rate decreased 436.7 kW regarding the basic system with the initial value of design parameters. However, the net power output of the system decreased from 353.21 kW to 280.1 kW, and the total annual cost of the system decreased from 8.215 $/h to 5.74 $/h. (C) 2019 Elsevier Ltd. All rights reserved.
机译:目前研究的目的是优化新型抛物面槽太阳能收集器辅助电力制冷系统。创新系统利用CO2作为工作流体,是一种自然介质,由三个子循环组成:Brayton循环,兰顿循环和蒸汽压缩制冷循环。利用二氧化碳作为工作流体的主要优点是;可提供大量,环保性质,如全球变暖潜力和零臭氧耗尽,以及出色的热力学性质。使用PTSC的太阳能提供系统的所需热能需求。在指定的设计配置方面,在能量和低级分析方面检查系统的热力学性能。对建议系统进行了经济分析,进行了优化程序。通过优化结果,确定最佳设计参数以获得更好的系统操作条件。三目标优化的结果表示,具有设计参数初始值的基本系统的总漏洞破坏率下降了436.7千瓦。但是,系统的净功率输出从353.21千瓦降至280.1千瓦,系统总年度成本从8.215 $ / h降至5.74 $ / h。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号