首页> 外文期刊>Reliability Engineering & System Safety >Probabilistic physics-of-failure models for component reliabilities using Monte Carlo simulation and Weibull analysis: a parametric study
【24h】

Probabilistic physics-of-failure models for component reliabilities using Monte Carlo simulation and Weibull analysis: a parametric study

机译:使用蒙特卡洛模拟和威布尔分析的概率概率失效物理模型用于部件可靠性:参数研究

获取原文
获取原文并翻译 | 示例
           

摘要

In reliability engineering, component failures are generally classified in one of three ways: (1) early life failures; (2) failures having random onset times; and (3) late life or 'wear out' failures. When the time-distribution of failures of a population of components is analysed in terms of a Weibull distribution, these failure types may be associated with shape parameters β having values <1, ~1, and >1 respectively. Early life failures are frequently attributed to poor design (e.g. poor materials selection) or problems associated with manufacturing or assembly processes. We describe a methodology for the implementation of physics-of-failure models of component lifetimes in the presence of parameter and model uncertainties. This treats uncertain parameters as random variables described by some appropriate statistical distribution, which may be sampled using Monte Carlo methods. The number of simulations required depends upon the desired accuracy of the predicted lifetime. Provided that the number of sampled variables is relatively small, an accuracy of 1-2% can be obtained using typically 1000 simulations. The resulting collection of times-to-failure are then sorted into ascending order and fitted to a Weibull distribution to obtain a shape factor /3 and a characteristic life-time η. Examples are given of the results obtained using three different models: (1) the Eyring-Peck (EP) model for corrosion of printed circuit boards; (2) a power-law corrosion growth (PCG) model which represents the progressive deterioration of oil and gas pipelines; and (3) a random shock-loading model of mechanical failure. It is shown that for any specific model the values of the Weibull shape parameters obtained may be strongly dependent on the degree of uncertainty of the underlying input parameters. Both the EP and PCG models can yield a wide range of values of β, from β> 1, characteristic of wear-out behaviour, to β< 1, characteristic of early-life failure, depending on the degree of dispersion of the uncertain parameters. If there is no uncertainty, a single, sharp value of the component lifetime is predicted, corresponding to the limit β=∞. In contrast, the shock-loading model is inherently random, and its predictions correspond closely to those of a constant hazard rate model, characterized by a value of β close to 1 for all finite degrees of parameter uncertainty. The results are discussed in the context of traditional methods for reliability analysis and conventional views on the nature of early-life failures.
机译:在可靠性工程中,组件故障通常以以下三种方式之一进行分类:(1)早期故障; (2)具有随机起效时间的故障; (3)晚年或“磨损”失败。当根据Weibull分布分析一组零件的失效时间分布时,这些失效类型可能与形状参数β分别具有值<1,〜1和> 1。早期寿命失败通常归因于不良的设计(例如,不良的材料选择)或与制造或组装过程相关的问题。我们描述了在存在参数和模型不确定性的情况下实现组件寿命失效物理模型的方法。这会将不确定参数视为由某些适当的统计分布描述的随机变量,可以使用蒙特卡洛方法进行采样。所需的模拟次数取决于预测寿命的期望精度。假设采样变量的数量相对较小,则通常使用1000个模拟就可以获得1-2%的精度。然后将得到的失效时间集合按升序排序,并拟合到威布尔分布中,以获得形状因子/ 3和特征寿命η。给出了使用三种不同模型获得的结果的示例:(1)印刷电路板腐蚀的Eyring-Peck(EP)模型; (2)幂律腐蚀增长(PCG)模型,表示石油和天然气管道的逐步恶化; (3)机械故障的随机冲击载荷模型。结果表明,对于任何特定的模型,所获得的威布尔形状参数的值可能在很大程度上取决于基础输入参数的不确定性程度。 EP和PCG模型都可以产生范围广泛的β值,其范围取决于不确定参数的分散程度,从β> 1,磨损行为的特征到β<1,早期失效的特征, 。如果没有不确定性,则将预测部件寿命的单个尖锐值,该值对应于极限β=∞。相反,冲击载荷模型本质上是随机的,其预测与恒定危害率模型的预测非常接近,其特征是对于所有有限度的参数不确定性,β值均接近于1。在传统的可靠性分析方法和关于早期失效性质的常规观点的背景下讨论了结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号