首页> 外文期刊>Reliability Engineering & System Safety >Quantitative Analysis of Dynamic Fault Trees by means of Monte Carlo Simulations: Event-Driven Simulation Approach
【24h】

Quantitative Analysis of Dynamic Fault Trees by means of Monte Carlo Simulations: Event-Driven Simulation Approach

机译:动态故障树的蒙特卡洛仿真定量分析:事件驱动仿真方法

获取原文
获取原文并翻译 | 示例
           

摘要

The reliability analysis of complex and dynamic systems is often achieved by a quantitative analysis of dynamic fault trees (DFT), which model the system failure, i.e. a specific undesired event called top event, in terms of failures of the components of the system. Indeed, DFT takes into account the sequential relationships among events and their statistical dependencies. Given the failure probability of the components, the quantitative analysis aims at numerically evaluating, among other things, the failure probability of the top event. In this paper, we are interested in the Monte Carlo simulation which can consider any kind of failure distribution and is not limited in the DFT representation: it considers DFT with repeated events and shared events, takes into account all dynamic gates (PAND, SEQ, FDEP, and SPARE). However, Monte Carlo simulation encounters some disadvantages: an entirely new simulation must be executed every time a parameter changes and it may be time-consuming when the desired accuracy is high. To address these difficulties, this paper proposes a new dynamic fault tree simulation performed by an event-driven simulator. With this approach, gate simulations that produce no change in the output of a gate are eliminated augmenting the speed up of the simulation. The implementation of our approach uses an event queue data structure and an event-scheduler as alternative to the usual time-driven implementation which is characterized by an iterative loop. Thus, periods of inactivity are omitted. As results, computational efficiency is obtained and the speed-up performance of the Monte Carlo simulation program is improved.
机译:复杂和动态系统的可靠性分析通常是通过对动态故障树(DFT)进行定量分析来完成的,该模型对系统故障进行建模,即根据系统组件的故障对特定的不良事件(称为最高事件)进行建模。实际上,DFT考虑了事件之间的顺序关系及其统计依赖性。给定组件的失效概率,定量分析旨在除其他事项外,通过数值评估顶级事件的失效概率。在本文中,我们对可以考虑任何类型的故障分布且不受DFT表示形式限制的Monte Carlo模拟感兴趣:它考虑具有重复事件和共享事件的DFT,并考虑了所有动态门(PAND,SEQ, FDEP和SPARE)。但是,蒙特卡洛模拟存在一些缺点:每次参数更改时都必须执行一个全新的模拟,而当所需的精度很高时,这可能会很耗时。为了解决这些困难,本文提出了一种新的由事件驱动模拟器执行的动态故障树模拟。使用这种方法,消除了不会在门输出中产生任何变化的门仿真,从而提高了仿真速度。我们的方法的实现使用事件队列数据结构和事件计划程序来替代通常的以迭代循环为特征的时间驱动实现。因此,不活动时段被省略。结果,获得了计算效率,并且改善了蒙特卡洛仿真程序的加速性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号