...
首页> 外文期刊>Radio Science >AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems
【24h】

AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems

机译:目标:解决大规模电磁散射和辐射问题的自适应积分方法

获取原文
获取原文并翻译 | 示例

摘要

We describe basic elements and implementation of the adaptive integral method (AIM): a fast iterative integral-equation solver applicable to large-scale electromagnetic scattering and radiation problems. As compared to the conventional method of moments, the AIM solver provides (for typical geometries) significantly reduced storage and solution time already for problems involving 2, 000 unknowns. This reduction is achieved through a compression of the impedance matrix, split into near-field and far-field components. The near-field component is computed by using the Galerkin method employing a set of N arbitrary basis functions. The far-field matrix elements are calculated by using the Galerkin method as well, with a set of N auxiliary basis functions. The auxiliary basis functions are constructed as superpositions of pointlike current elements located on uniformly spaced Cartesian grid nodes and are required to reproduce, with a prescribed accuracy, the far field generated by the original basis functions. Algebraically, the resulting near-field component of the impedance matrix is sparse, while its far-field component is a product of two sparse matrices and a three-level Toeplitz matrix. These Toeplitz properties are exploited, by using discrete fast Fourier transforms, to carry out matrix-vector multiplications with O(N log N) and O(N log N) serial complexities for surface and volumetric scattering problems, respectively. The corresponding storage requirements are O(N) and O(N). In the domain-decomposed parallelized implementation of the solver, with the number NP of processors equal to the number of domains, the total memory required in surface problems is reduced to O(N/NP). The speedup factor in matrix-vector multiplication is equal to the number of processors NP. We present a detailed analysis of the errors introduced by the use of the auxiliary basis functions in computing far-field impedance matrix elements. We also discuss the algorithm complexity and some aspects of its implementation and applications.
机译:我们描述了自适应积分方法(AIM)的基本要素和实现:一种适用于大规模电磁散射和辐射问题的快速迭代积分方程求解器。与传统的矩量法相比,AIM求解器(针对典型的几何形状)已大大减少了涉及2,000个未知数的问题的存储和求解时间。这种降低是通过将阻抗矩阵压缩成近场和远场分量来实现的。通过使用采用一组N个任意基函数的Galerkin方法计算近场分量。远场矩阵元素也使用Galerkin方法计算,并具有一组N个辅助基函数。辅助基函数构造为位于均匀分布的笛卡尔网格节点上的点状电流元素的叠加,并且需要以指定的精度再现由原始基函数生成的远场。代数上,阻抗矩阵的所得近场分量是稀疏的,而其远场分量是两个稀疏矩阵和三级Toeplitz矩阵的乘积。通过使用离散快速傅立叶变换来利用这些Toeplitz属性,分别对表面和体积散射问题进行O(N log N)和O(N log N)序列复杂度的矩阵矢量乘法。相应的存储要求为O(N)和O(N)。在求解器的域分解并行化实现中,如果处理器的NP数量等于域的数量,则表面问题所需的总内存将减少为O(N / NP)。矩阵矢量乘法的加速因子等于处理器NP的数量。我们对在计算远场阻抗矩阵元素时使用辅助基函数引入的误差进行了详细分析。我们还将讨论算法的复杂性及其实现和应用的某些方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号