首页> 外文期刊>Radio Science >Development of a dual-beam intersection technique for microwave breakdown plasma spectroscopy and detection of air compositions
【24h】

Development of a dual-beam intersection technique for microwave breakdown plasma spectroscopy and detection of air compositions

机译:微波击穿等离子体光谱和空气成分检测的双光束交叉技术的发展

获取原文
获取原文并翻译 | 示例
           

摘要

A dual-beam intersection apparatus for microwave breakdown plasma spectroscopy (MBS) has been developed and tested for real-time, simultaneous, and in situ monitoring of the trace gases in the air. The dual microwave beams, which are supplied by a 9.4G Hz pulse magnetron (feed power: 0-80 kW, pulse width: 5 μs, pulse repetition frequency: 10 Hz) using a power divider, are focused and superposed on a center of a reaction chamber through two dielectric lenses. The superposed electric field brings about the gaseous breakdown phenomena on the focusing point, where the photons emitted from the proper gas components can be detected and assigned using two-dimensional wavelength/time-resolved photoemission spectroscopy. The preliminary experiment has demonstrated that the emission intensities of breakdown plasma strongly depended on the phase difference between two microwave beams. Also, almost all the plasma spectra of the dual-beam system were more intensified than that of the single-beam system developed previously by us, and the relative continuum background decreased remarkably as well. For the 81 ppm of CCl2F2 gas mixed with the model atmosphere, the Cl atomic line of 837.6 nm (4pD7/2 – 4sP5/2) could clearly be detected at room temperature in total pressure of 10Torr. Present experiments have proved that the beam controllability of the dual-beam system is superior to that of the single-beam system to realize the appropriate breakdown conditions.
机译:已经开发出了一种用于微波击穿等离子体光谱法(MBS)的双光束交叉装置,并对其进行了实时,同时和就地监测空气中痕量气体的测试。使用功率分配器将由9.4G Hz脉冲磁控管(馈电功率:0-80 kW,脉冲宽度:5μs,脉冲重复频率:10 Hz)提供的双微波束聚焦并叠加在通过两个介电透镜的反应室。叠加的电场在焦点处产生气态击穿现象,在该焦点处可以使用二维波长/时间分辨的光发射光谱法检测并分配从适当的气体成分发出的光子。初步实验表明,击穿等离子体的发射强度很大程度上取决于两个微波束之间的相位差。同样,双束系统的几乎所有等离子体光谱都比我们先前开发的单束系统的等离子体光谱更增强,并且相对连续背景也显着降低。对于与模型大气混合的81 ppm CCl2F2气体,在室温下以10Torr的总压力可以清楚地检测到837.6 nm(4pD7 / 2 – 4sP5 / 2)的Cl原子线。目前的实验已经证明,双光束系统的光束可控性优于单光束系统,以实现适当的击穿条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号