首页> 外文期刊>Progress in Oceanography >Upwind dynamic soaring of albatrosses and UAVs
【24h】

Upwind dynamic soaring of albatrosses and UAVs

机译:信天翁和无人机的迎风动态飙升

获取原文
获取原文并翻译 | 示例
           

摘要

Albatrosses have been observed to soar in an upwind direction using what is called here an upwind mode of dynamic soaring. The upwind mode was modeled using the dynamics of a two-layer Rayleigh cycle in which the lower layer has zero velocity and the upper layer has a uniform wind speed of W. The upwind mode consists of a climb across the wind-shear layer headed upwind, a 90° turn and descent across the wind-shear layer perpendicular to the wind, followed by a 90° turn into the wind. The increase of airspeed gained from crossing the wind-shear layer headed upwind was balanced by the decrease of airspeed caused by drag. Results show that a wandering albatross can soar over the ocean in an upwind direction at a mean speed of 8.4 m/s in a 3.6 m/s wind, which is the minimum wind speed necessary for sustained dynamic soaring. A main result is that albatrosses can soar upwind much faster than the wind speed. Furthermore, albatrosses were found to be able to increase upwind speeds in winds greater than 3.6 m/s, reaching an upwind speed of 12.1 m/s in a wind speed of 7 m/s (for example). The upwind dynamic soaring mode of a possible robotic albatross UAV (Unmanned Aerial Vehicle) was modeled using a Rayleigh cycle and characteristics of a high-performance glider. Maximum possible airspeeds are equal to approximately 9.5 times the wind speed of the upper layer. In a wind of 10 m/s, the maximum possible upwind (56 m/s) and across-wind (61 m/s) components of UAV velocity over the ocean result in a diagonal upwind velocity of 83 m/s. In sufficient wind, a UAV could, in principle, use fast diagonal speeds to rapidly survey large areas of the ocean surface and the marine boundary layer. In practice, the maximum speeds of a UAV soaring over the ocean could be significantly less than these predictions. Some limitations to achieving fast travel velocities over the ocean are discussed and suggestions are made for further studies to test the concept of a robotic albatross.
机译:已经观察到信天翁使用所谓的动态动态的迎风模式沿迎风方向飞翔。上风模式是使用两层瑞利循环的动力学建模的,其中下层的速度为零,上层的风速为W。上风模式包括越过风切变层的风向,然后旋转90°并在垂直于风的风切变层上下降,然后旋转90°进入风中。越过迎风向上的风切变层所获得的空速的增加被阻力引起的空速的减少所平衡。结果表明,漂泊的信天翁可以在3.6 m / s的风中以8.4 m / s的平均速度在逆风方向上飞过海洋,这是持续动态腾飞所需的最小风速。一个主要的结果是信天翁的上风比风速快得多。此外,信天翁被发现能够在大于3.6 m / s的风中增加逆风速度,例如在7 m / s的风速中达到12.1 m / s的逆风速度。利用瑞利循环和高性能滑翔机的特性对可能的信天翁无人机(无人飞行器)的迎风动态高飞模式进行了建模。最大可能的空速大约等于上层风速的9.5倍。在风速为10 m / s的情况下,UAV速度在海洋上的最大可能逆风(56 m / s)和逆风(61 m / s)分量导致对角风速为83 m / s。在充足的风中,无人机原则上可以使用快速的对角线速度来快速调查大面积的海洋表面和海洋边界层。在实践中,无人机在海洋上高空飞行的最大速度可能大大低于这些预测。讨论了在海洋上实现快速行驶速度的一些局限性,并提出了建议以供进一步研究以测试机器人信天翁的概念。

著录项

  • 来源
    《Progress in Oceanography》 |2015年第1期|146-156|共11页
  • 作者

    Philip L. Richardson;

  • 作者单位

    Department of Physical Oceanography MS#29, Woods Hole Oceanographic Institution, 360 Woods Hole Road, Woods Hole, MA 02543, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号