首页> 外文期刊>Progress in Nuclear Energy >Nanofluid application for heat transfer, safety, and natural circulation enhancement in the NuScale nuclear reactor as a small modular reactor using computational fluid dynamic (CFD) modeling via neutronic and thermal-hydraulics coupling
【24h】

Nanofluid application for heat transfer, safety, and natural circulation enhancement in the NuScale nuclear reactor as a small modular reactor using computational fluid dynamic (CFD) modeling via neutronic and thermal-hydraulics coupling

机译:纳米流体用于传热,安全性和天然循环的核电抗器中的循环增强,其使用计算流体动力学(CFD)通过中子和热液压耦合建模的小模块化反应器

获取原文
获取原文并翻译 | 示例
       

摘要

In recent years, "Nanofluid" and "Energy-Efficient Cooling" have been achieved growing attention for use in new nuclear reactor technology. Also, the assurance of reactor safety has become of top priority in nuclear energy development because of the significant role of nuclear power in providing worldwide electricity. The use of nanofluid coolant is an effective way to enhance safety margins and heat transfer performance. Studies also prove that nanofluids are promising cooling fluids for applying as a future coolant in nuclear reactors. The current paper investigates the nanofluid effects as a coolant on the velocity of bulk, pressure drop, heat transfer coefficient, power peaking factors, and minimum departure from nucleate boiling ratio in a NuScale reactor, a natural circulation pressurized water reactor (PWR). It also analyzes the thermal characteristics of Al2O3 nanofluid with specific attention to their boiling heat transfer behavior. The study first presents the NuScale designed core with the use of water and different concentrations of Al2O3 nanofluid (0.001-10% volume fractions and 10-90 nm particle sizes). Then it shows the simulated equivalent cell with surrounding coolant utilizing computational fluid dynamic code (CFD). The study also describes the outcomes of replacing water with nanofluid coolant on natural circulation parameters, heat transfer coefficient, and minimum departure from nucleate boiling ratio with changes in nanoparticle concentrations and sizes. The results demonstrate the potential of this innovative coolant to enhance the minimum departure from nucleate boiling ratio and heat transfer coefficient. Overall, the presence of Alumina nanoparticles in water improves thermal performance and safety. The investigation also shows that the nanoparticles do not change the power peaking factor and neutronic performance significantly.
机译:近年来,在新的核反应堆技术中使用了“纳米流体”和“节能冷却”。此外,由于核电在全球电力方面的显着作用,反应堆安全的保证已成为核能发展的首要任务。纳米流体冷却剂的使用是增强安全裕度和传热性能的有效方法。研究还证明,纳米流体是有前途的冷却液,用于施加核反应堆中的未来冷却剂。目前的纸张将纳米流体效应作为冷却剂对散装,压降,传热系数,功率峰值因子的速度,最小偏离NUSCALE反应器中的核心沸腾比,是一种天然循环加压水反应器(PWR)。它还分析了Al2O3纳米流体的热特性,具有特别关注其沸腾的传热行为。该研究首先展示了采用水和不同浓度的Al 2 O 3纳米流体(0.001-10%体积分数和10-90nm粒度)的喷射设计的核心。然后,它显示了利用计算流体动态代码(CFD)的周围冷却剂的模拟等效电池。该研究还描述了在天然循环参数,传热系数和最小偏离核心浓度和尺寸的变化下,用纳米流体冷却剂替换水的结果。结果证明了这种创新冷却剂的潜力,以提高核心沸腾比和传热系数的最小偏离。总体而言,氧化铝纳米粒子在水中的存在提高了热性能和安全性。研究还表明,纳米颗粒不会显着改变功率峰值因子和中性性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号