首页> 外文期刊>Annals of nuclear energy >Predicting and optimizing the thermal-hydraulic, natural circulation, and neutronics parameters in the NuScale nuclear reactor using nanofluid as a coolant via machine learning methods through GA, PSO and HPSOGA algorithms
【24h】

Predicting and optimizing the thermal-hydraulic, natural circulation, and neutronics parameters in the NuScale nuclear reactor using nanofluid as a coolant via machine learning methods through GA, PSO and HPSOGA algorithms

机译:通过GA,PSO和HPSOGA算法通过机器学习方法预测和优化NUSCALE核反应堆中的热液压,自然循环和中子学参数。通过GA,PSO和HPSoga算法,通过机器学习方法使用纳米流体

获取原文
获取原文并翻译 | 示例
       

摘要

This investigation studies the optimization of water-based alumina nanofluid to advance heat transfer and safety performance of the NuScale natural circulation reactor. First, comprehensive CFD and neutronic simulation is employed to design a reactor core using nanofluid coolant (0.001-10% volume fractions and 10-90 nm particle sizes). Consequently, the outlined results prove a sufficient enhancement of safety and heat transfer parameters by applying nanofluid coolant. Next, a developed Artificial Neural Network (ANN), utilizing the obtained data, predicts the thermal-hydraulic and neutronic parameters of the NuScale reactor core with Al2O3 /Water nanofluid. Achieving the optimal vol% and size of nanoparticles by implementing Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and Hybridized PSO-GA, based on the developed ANN results, are the main goals of this work. These optimization algorithms, which have a significant ability to attain the best solutions, also determine the optimal values of natural circulation parameters (V-max/V-avg, V-out -V-in, and pressure drop), heat transfer coefficient, MDNBR, RPPF, and excess reactivity, for obtained vol% and size. The validation results demonstrate the efficiency of the developed ANN and these three evolutionary computation algorithms for optimization. The differences between the outcomes of implemented algorithms, focusing on how each works and affects optimal solutions in problem space, are also described. Finally, this paper compares the results of optimal design with conventional NuScale, which uses water coolant. This comparison indicates the potential of the proposed nanofluid coolant to increase thermal and safety performance. (C) 2021 Elsevier Ltd. All rights reserved.
机译:该研究研究了水性氧化铝纳米流体的优化,以推进NUSCALE天然循环反应器的传热和安全性能。首先,采用全面的CFD和中核模拟来设计使用纳米流体冷却剂(0.001-10%体积分数和10-90nm粒径)来设计反应器核心。因此,通过施加纳米流体冷却剂,概述的结果证明了安全性和传热参数的充分提高。接下来,利用所获得的数据的开发人工神经网络(ANN)预测NUSCALE反应器芯的热液压和中核参数用AL2O3 /水纳米流体。通过实施遗传算法(GA),粒子群优化(PSO)和杂交的PSO-GA来实现纳米粒子的最佳Vol%和大小,基于发达的ANN结果,是这项工作的主要目标。这些优化算法具有重要的达到最佳解决方案的能力,还确定了自然循环参数的最佳值(V-MAX / V-AVG,V-OUT-IN和压降),传热系数, MDNBR,RPPF和过量的反应性,获得Vol%和大小。验证结果展示了开发的ANN和这三个进化计算算法的效率进行了优化。还描述了实现算法结果之间的差异,专注于每个作品和影响问题空间中的最佳解决方案。最后,本文将优化设计与传统NUSCALE的结果进行了比较,使用水冷却剂。该比较表明,所提出的纳米流体冷却剂的电位增加了热和安全性能。 (c)2021 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号