...
首页> 外文期刊>Progress in Nuclear Energy >Verification of the current coupling collision probability method with orthogonal flux expansion for the assembly calculations
【24h】

Verification of the current coupling collision probability method with orthogonal flux expansion for the assembly calculations

机译:验证组装计算的正交通量扩展电流耦合碰撞概率方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The operation of nuclear reactors requires detailed knowledge of important safety parameters, such as the spatial power distribution, control rod worth, margin to departure from nucleate boiling (DNB), fuel pin burnup etc. To obtain a detailed analysis of all of the safety parameters requires a full core pin-by-pin coupled neutronics and thermal-hydraulics simulations which are too computationally expensive even for modern high-performance computer clusters. Therefore, the industrial standard approach in design and safety calculations are coupled neutronics and thermal-hydraulics codes for the steady state and transient simulations. In these codes, the neutronics calculations are typically performed at a nodal level using the diffusion approximation and assembly homogenised sets of cross-sections while the thermal hydraulics relies on a channel model with fuel assembly sized channels. However, for determining safety limits, which are based on local pin-based parameters, the knowledge of the power and temperature distribution on a nodal level is not sufficient. Therefore, novel new approaches are required to resolve this multiscale and multiphysics problem to resolve the power distribution within the zones of interest. Pin-wise calculations, in this case, are performed by applying a transport solver using the heterogeneous fuel assembly geometry on an unstructured mesh with boundary conditions extracted from the 3D full core nodal diffusion solution. This combined nodal-transport approach will provide the detailed power distribution on the pin-level and perform coupled multiphysics simulations within reasonable simulation time limits, which is important for industry.To follow this strategy, a transport solver is required which can be used for the flux reconstruction on the pin level. Current coupling collision probability (CCCP) method seems to be a good choice for the development of such a solver.In this study, the developed transport solver utilising CCCP method with orthogonal flux expansion is tested and verified on the set of the benchmark problems. The results of simulations are compared with the results of Monte Carlo and deterministic code. The expansion of the flux by orthogonal polynomials allows us to avoid discretisation of the calculation regions while keeping the accuracy of the calculations to an acceptable level. The results of the calculations demonstrate good agreement with the results of Monte Carlo calculations. The comparison of the new method with the flat flux (today's industry standard approach) approximation demonstrates either an improved quality of the result for identical cell discretisation or reduced computational time to achieve the identical solution.
机译:核反应堆的运作需要详细了解重要的安全参数,例如空间配电,控制杆价值,远离成核沸腾(DNB),燃料销烧伤等的裕度。以获得所有安全参数的详细分析需要全芯刀引脚耦合中型和热液压模拟,即使对于现代高性能电脑群,均未计算出昂贵。因此,设计和安全计算中的工业标准方法是稳定状态和瞬态模拟的耦合中子学和热液压码。在这些代码中,使用扩散近似和组装均质横截面的节点水平在节点水平上进行中子学计算,而热液压依赖于具有燃料组件尺寸的通道的通道模型。然而,为了确定基于本地销的参数的安全限制,节点水平上的功率和温度分布的知识是不够的。因此,需要新的新方法来解决此多尺度和多体验问题,以解决感兴趣的区域内的功率分布。在这种情况下,通过在非结构化网上应用异构燃料组件几何形状来执行在这种情况下,通过从3D全核心节点扩散解决方案提取的边界条件的非均相燃料组件几何形状来执行传输求解器来执行。这种组合的节点传输方法将为PIN级提供详细的功率分布,并在合理的模拟时间限制内执行耦合的多体型模拟,这对于行业来说很重要。要遵循该策略,所需的运输求解器可以用于PIN电平的磁通重建。目前的耦合碰撞概率(CCCP)方法似乎是开发这种求解器的良好选择。在本研究中,利用具有正交通量扩展的CCCP方法的发达的传送求解器进行了测试,并在基准问题的集合上验证。将模拟结果与Monte Carlo和确定性代码的结果进行比较。通过正交多项式的通量的扩展允许我们避免计算区域的离散化,同时将计算的准确性保持在可接受的水平。计算结果表现出与蒙特卡罗计算结果吻合良好的一致性。具有扁平通量(当今的行业标准方法)近似的新方法的比较显示出具有相同细胞离散或降低计算时间以实现相同解决方案的结果的提高质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号