...
首页> 外文期刊>Progress in Materials Science >Damage tolerant design of additively manufactured metallic components subjected to cyclic loading: State of the art and challenges
【24h】

Damage tolerant design of additively manufactured metallic components subjected to cyclic loading: State of the art and challenges

机译:受循环加载的含有含有制造金属成分的损伤耐损害设计:现有技术和挑战

获取原文

摘要

Undoubtedly, a better understanding and the further development of approaches for damage tolerant component design of AM parts are among the most significant challenges currently facing the use of these new technologies. This article presents a thorough overview of the discussion at an international workshop on the topic. It aims to provide a review of the parameters affecting the damage tolerance of parts produced by additive manufacturing (shortly, AM parts) with special emphasis on the process parameters intrinsic to the AM technologies, the resulting defects and the residual stresses. Based on these aspects, basic concepts are reviewed and critically discussed specifically for AM materials: -Criteria for damage tolerant component design; -Criteria for the determination of fatigue and fracture properties; -Strategies for the determination of the fatigue life in dependence of different manufacturing conditions; -Methods for the quantitative characterization of microstructure and defects; -Methods for the determination of residual stresses; -Effect of the defects and the residual stresses on the fatigue life and behaviour. We see that many of the classic concepts need to be expanded in order to fit with the particular microstructure (grain size and shape, crystal texture) and defect distribution (spatial arrangement, size, shape, amount) present in AM (in particular laser powder bed fusion). For instance, 3D characterization of defects becomes essential, since the defect shapes in AM are diverse and impact the fatigue life in a different way than in the case of conventionally produced components. Such new concepts have immediate consequence on the way one should tackle the determination of the fatigue life of AM parts; for instance, since a classification of defects and a quantification of the tolerable shapes and sizes is still missing, a new strategy must be defined, whereby theoretical calculations (e. g. finite element modeling) allow determining the maximum tolerable defect size, and non-destructive testing (NDT) techniques are required to detect whether such defects are indeed present in the component. Such examples show how component design, damage and failure criteria, and characterization (and/or NDT) become for AM parts fully interlinked. We conclude that the homogenization of these fields represents the current challenge for the engineer and the materials scientist.
机译:毫无疑问,更好地理解和进一步发展AM零件的损坏组件设计方法是目前面临这些新技术的最重要挑战之一。本文彻底概述了国际讲习班关于该主题的讨论。它旨在提供影响由添加剂制造(不久,AM部件)产生的零件损伤容差的参数的综述,特别强调AM技术的过程参数,所产生的缺陷和残余应力。基于这些方面,基本概念进行了综述,专门针对AM材料讨论: - 用于损坏耐损害部件设计的克兰特克; - 测定疲劳和骨折性能的克兰特啶; - 根据不同的制造条件确定疲劳寿命的战略; - 用于定量表征微观结构和缺陷的方法; - 用于测定残余应力的方法; - 缺陷和残余应力对疲劳寿命和行为的影响。我们看到,需要扩展许多经典概念,以便适合AM中存在的特定微观结构(晶粒尺寸和形状,晶粒,晶体纹理)和缺陷分布(空间排列,尺寸,形状)(特别是激光粉末床融合)。例如,缺陷的3D表征变得必不可少,因为AM中的缺陷形状是多样的,并且以不同的方式影响疲劳寿命而不是在常规产生的部件的情况下。这种新的概念在应该解决am零件的疲劳寿命的方式时立即产生了后果;例如,由于仍然缺少缺陷的分类和可容许的形状和大小的量化,因此必须定义新的策略,由此理论计算(例如有限元建模)允许确定最大可容忍的缺陷大小,并且不破坏性测试(NDT)技术需要检测这些缺陷是否确实存在于组件中。这样的示例显示了组件设计,损坏和故障标准以及表征(和/或NDT)如何成为完全交互的AM部件。我们得出结论,这些领域的均匀化代表了工程师和材料科学家的当前挑战。

著录项

  • 来源
    《Progress in Materials Science》 |2021年第8期|100786.1-100786.73|共73页
  • 作者单位

    Bundesanstalt Materialforsch & Prufung BAM Unter Eichen 87 D-12205 Berlin Germany;

    Bundesanstalt Materialforsch & Prufung BAM Unter Eichen 87 D-12205 Berlin Germany;

    INSA Lyon F-69621 Villeurbanne France;

    Univ Kassel Inst Mat Engn Metall Mat Monchebergstr 3 D-34125 Kassel Germany;

    Univ Kassel Inst Mat Engn Metall Mat Monchebergstr 3 D-34125 Kassel Germany;

    Univ Kassel Inst Mat Engn Metall Mat Monchebergstr 3 D-34125 Kassel Germany;

    Coventry Univ Priory St Coventry CV1 5FB W Midlands England;

    Helmholtz Zentrum Geesthacht Max Plank Str 1 D-21502 Geesthacht Germany;

    Univ Padua Via Venezia 1 I-35131 Padua Italy;

    NIST 325 Broadway MS-647 Boulder CO 80305 USA;

    Bundesanstalt Materialforsch & Prufung BAM Unter Eichen 87 D-12205 Berlin Germany;

    Bundesanstalt Materialforsch & Prufung BAM Unter Eichen 87 D-12205 Berlin Germany;

    Bundesanstalt Materialforsch & Prufung BAM Unter Eichen 87 D-12205 Berlin Germany;

    COMTES FHT Prumyslova 995 Dobrany 33441 Czech Republic;

    COMTES FHT Prumyslova 995 Dobrany 33441 Czech Republic;

    COMTES FHT Prumyslova 995 Dobrany 33441 Czech Republic;

    Fraunhofer Inst Betriebsfestigkeit LBF Bartningstr 47 D-64298 Darmstadt Germany;

    Politecn Milan Via La Masa 1 I-20156 Milan Italy;

    Bundesanstalt Materialforsch & Prufung BAM Unter Eichen 87 D-12205 Berlin Germany;

    Fraunhofer Inst Betriebsfestigkeit LBF Bartningstr 47 D-64298 Darmstadt Germany;

    Fraunhofer Inst Betriebsfestigkeit LBF Bartningstr 47 D-64298 Darmstadt Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Additive manufacturing; Fatigue loading; Component assessment; Damage tolerance; Defects; Residual stresses;

    机译:添加剂制造;疲劳负载;组分评估;损伤耐受性;缺陷;残留的压力;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号