首页> 外文期刊>Progress in Energy and Combustion Science >Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities
【24h】

Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities

机译:湍流预混燃烧:小火焰结构及其对湍流燃烧速度的影响

获取原文
获取原文并翻译 | 示例
       

摘要

This review paper addresses the following question: what is the structure of flamelets within premixed turbulent combustion and how does this structure affect the turbulent burning velocity? We also ask: how accurately can new models predict the flamelet structure as well as the values of turbulent burning velocity? Flamelet structure is defined to include the following quantities: reaction layer surface area per unit volume (∑), the brush thickness (δ_T) and the stretch factor (I_0). One equation that is commonly used to relate these flamelet structure parameters to the burning velocity S_T is S_T/S_(L0)=I_0∫_(-∞)~∞ ∑ dη = I_0∑_(max)δ_T. Recent results obtained using laser imaging methods and direct numerical simulation (DNS) are reviewed in order to demonstrate the relationships between S_T,∑, I_0 and δ_T. η is the direction normal to the brush. Measurements of ∑ show that the wrinkling process is not local but has a "memory" of wrinkling that occurs elsewhere. The stretch factor I_0 depends on differential diffusion (Markstein number) even at large turbulence intensities. Thus the concepts associated with the theory of flame stretch have been found to be valid even for highly turbulent flames. Thin fiamelets exist for nearly all cases for which images of the reaction zone have been obtained. Evidence of "non-flamelet" behavior is sparse. DNS now can successfully predict realistic values of turbulent burning velocity for laboratory-scale Reynolds numbers and for the realistic geometries of Bunsen and V-flames using complex chemistry and no empirical constants. Large eddy simulations (LES) also have predicted reasonable values of S_T, but some empirical constants are required. A number of current research issues are discussed.
机译:这篇评论文章解决了以下问题:预混湍流燃烧中小火焰的结构是什么?这种结构如何影响湍流燃烧速度?我们还问:新模型如何准确地预测小火焰结构以及湍流燃烧速度的值?小火焰结构定义为包括以下数量:每单位体积的反应层表面积(∑),电刷厚度(δ_T)和拉伸因子(I_0)。通常将这些小火焰结构参数与燃烧速度S_T相关联的一个方程是S_T / S_(L0)=I_0∫_(-∞)〜∞∑dη= I_0∑_(max)δ_T。为了证明S_T,∑,I_0和δ_T之间的关系,回顾了使用激光成像方法和直接数值模拟(DNS)获得的最新结果。 η是垂直于画笔的方向。 ∑的测量表明,起皱过程不是局部的,而是具有在其他地方发生的起皱的“记忆”。即使在大湍流强度下,拉伸因子I_0也取决于微分扩散(马克斯坦数)。因此,已经发现与火焰拉伸理论相关的概念即使对于高度湍流的火焰也是有效的。对于几乎所有已获得反应区图像的情况,都存在薄的护发素。 “非火焰状”行为的证据很少。 DNS现在可以使用复杂的化学方法且无需经验常数,就实验室规模的雷诺数以及本生和V型火焰的实际几何形状成功地预测湍流燃烧速度的实际值。大型涡流模拟(LES)也预测了S_T的合理值,但需要一些经验常数。讨论了许多当前的研究问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号