...
首页> 外文期刊>Progress in Energy and Combustion Science >Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas
【24h】

Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas

机译:产生氢气,氧气和合成气的电催化剂

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Water electrolysis is the most promising method for efficient production of high purity hydrogen (and oxygen), while the required power input for the electrolysis process can be provided by renewable sources (e.g. solar or wind). The thus produced hydrogen can be used either directly as a fuel or as a reducing agent in chemical processes, such as in Fischer-Tropsch synthesis. Water splitting can be realized both at low temperatures (typically below 100 degrees C) and at high temperatures (steam water electrolysis at 500-1000 degrees C), while different ionic agents can be electrochemically transferred during the electrolysis process (OH-, H+, O2-). Singular requirements apply in each of the electrolysis technologies (alkaline, polymer electrolyte membrane and solid oxide electrolysis) for ensuring high electrocatalytic activity and long-term stability. The aim of the present article is to provide a brief overview on the effect of the nature and structure of the catalyst-electrode materials on the electrolyzer's performance. Past findings and recent progress in the development of efficient anode and cathode materials appropriate for large-scale water electrolysis are presented. The current trends, limitations and perspectives for future developments are summarized for the diverse electrolysis technologies of water splitting, while the case of CO2/H2O co-electrolysis (for synthesis gas production) is also discussed. (C) 2016 The Authors. Published by Elsevier Ltd.
机译:水电解是高效生产高纯度氢气(和氧气)的最有前途的方法,而电解过程所需的功率输入可以由可再生资源(例如太阳能或风能)提供。这样产生的氢可以直接用作燃料或用作化学过程中的还原剂,例如费-托合成中。在低温(通常低于100摄氏度)和高温(在500-1000摄氏度的蒸汽水中电解)下均可实现水分解,而在电解过程中可以通过电化学方式转移不同的离子试剂(OH-,H +, O2-)。在每种电解技术(碱性,聚合物电解质膜和固体氧化物电解)中都应用了单个要求,以确保高电催化活性和长期稳定性。本文的目的是简要概述催化剂电极材料的性质和结构对电解槽性能的影响。介绍了过去的发现和最近发展中的适用于大规模水电解的高效阳极和阴极材料的进展。对于各种水分解电解技术,总结了当前的趋势,局限性和对未来发展的看法,同时还讨论了CO2 / H2O共电解(用于合成气生产)的情况。 (C)2016作者。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号