首页> 外文期刊>Process Biochemistry >Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains
【24h】

Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains

机译:耐热酵母菌株的整合生物处理以及木质纤维素同时糖化和发酵为乙醇

获取原文
获取原文并翻译 | 示例
           

摘要

Consolidated bioprocessing (CBP), which integrates enzyme production, saccharification and fermentation into a single process, is a promising strategy for effective ethanol production from lignocellulosic materials because of the resulting reduction in utilities, the substrate and other raw materials and simplification of operation. CBP requires a highly engineered microbial strain capable of hydrolyzing biomass with enzymes produced on its own and producing high-titer ethanol. Recently, heterologous production of cellulolytic enzymes has been pursued with yeast hosts, which has realized direct conversion of cellulose to ethanol. Specifically, the development of cell surface engineering, which provides a display of cellulolytic enzymes on the yeast cell surface, facilitates effective biomass hydrolysis concomitantly with ethanol production. On the other hand, the difference in optimum temperature between saccharification and fermentation is a drawback of efficient ethanol production in the simultaneous saccharification and fermentation (SSF). The application of thermotolerant yeast strains engineered to the SSF process would overcome the drawback by performing hydrolysis and fermentation at elevated temperature. In this review, we focus on the recent advances in the application of thermotolerant yeast to CBP and SSF of lignocellulosic material to ethanol. The development of thermotolerant and ethanologenic yeast strains with the ability to hydrolyze lignocellulosic materials is emphasized for high-temperature CBP.
机译:整合的生物处理(CBP)将酶的生产,糖化和发酵整合到一个单一的过程中,是一种从木质纤维素材料有效生产乙醇的有前途的策略,因为其结果是减少了效用,基质和其他原材料,并简化了操作。 CBP需要一种高度工程化的微生物菌株,该菌株能够利用自身产生的酶水解生物质并产生高滴度的乙醇。近来,已经在酵母宿主中追求纤维素分解酶的异源生产,其已经实现了纤维素向乙醇的直接转化。具体地,提供酵母酶表面上的纤维素分解酶展示的细胞表面工程的发展促进了伴随乙醇生产的有效生物质水解。另一方面,糖化和发酵之间的最佳温度差是在同时糖化和发酵(SSF)中有效生产乙醇的缺点。通过在高温下进行水解和发酵,将经过工程改造的耐热酵母菌株应用于SSF工艺将克服这一缺陷。在这篇综述中,我们关注于耐热酵母在木质纤维素材料的CBP和SSF在乙醇中的应用的最新进展。对于高温CBP,强调了具有水解木质纤维素材料能力的耐热和产乙醇酵母菌株的开发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号